A073084 Decimal expansion of -x, where x is the negative solution to the equation 2^x = x^2.
7, 6, 6, 6, 6, 4, 6, 9, 5, 9, 6, 2, 1, 2, 3, 0, 9, 3, 1, 1, 1, 2, 0, 4, 4, 2, 2, 5, 1, 0, 3, 1, 4, 8, 4, 8, 0, 0, 6, 6, 7, 5, 3, 4, 6, 6, 6, 9, 8, 3, 2, 0, 5, 8, 4, 6, 0, 8, 8, 4, 3, 7, 6, 9, 3, 5, 5, 5, 2, 7, 9, 5, 7, 2, 4, 8, 7, 2, 4, 2, 2, 8, 5, 3, 0, 2, 9, 2, 0, 9, 6, 9, 7, 9, 0, 2, 5, 3, 0, 5, 6, 5, 4, 7, 9
Offset: 0
Examples
0.76666469596212309311120442251031484800...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.11, p. 449.
Links
- Stanislav Sykora, Table of n, a(n) for n = 0..1999
- RJMilazzo and others, largest solution to 2^x=x^2, thread in newsgroup sci.math, Aug 17, 2002.
- Eric Weisstein's World of Mathematics, Power.
- Index entries for transcendental numbers.
Crossrefs
Programs
-
Maple
evalf((f-> LambertW(f)/f)(log(2)/2), 145); # Alois P. Heinz, Aug 03 2023
-
Mathematica
RealDigits[NSolve[2^x == x^2, x, WorkingPrecision -> 150][[1, 1]][[2]]][[1]] c = -Exp[-LambertW[Log[2]/2]]; RealDigits[c, 10, 111][[1]] (* Robert G. Wilson v, May 18 2021 *) (* To view the two curves: *) Plot[{2^x, x^2}, {x, -4.5, 4.5}] (* Robert G. Wilson v, May 18 2021 *) RealDigits[-x/.FindRoot[2^x==x^2,{x,-1},WorkingPrecision->120],10,120][[1]] (* Harvey P. Dale, Jul 15 2023 *)
-
PARI
lambertw(log(sqrt(2)))/log(sqrt(2)) \\ Stanislav Sykora, Nov 04 2013
Formula
-2*LambertW(log(2)/2)/log(2). - Eric W. Weisstein, Jan 23 2005
Equals 1/A344905. - Hugo Pfoertner, Dec 18 2024
Extensions
Offset corrected by R. J. Mathar, Feb 05 2009
Comments