A073093 Number of prime power divisors of n.
1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 3, 5, 2, 4, 2, 4, 3, 3, 2, 5, 3, 3, 4, 4, 2, 4, 2, 6, 3, 3, 3, 5, 2, 3, 3, 5, 2, 4, 2, 4, 4, 3, 2, 6, 3, 4, 3, 4, 2, 5, 3, 5, 3, 3, 2, 5, 2, 3, 4, 7, 3, 4, 2, 4, 3, 4, 2, 6, 2, 3, 4, 4, 3, 4, 2, 6, 5, 3, 2, 5, 3, 3, 3, 5, 2, 5, 3, 4, 3, 3, 3, 7, 2, 4, 4, 5, 2, 4, 2, 5, 4
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- T. M. Apostol, Resultants of Cyclotomic Polynomials, Proc. Amer. Math. Soc. 24, 457-462, 1970.
- T. M. Apostol, The Resultant of the Cyclotomic Polynomials Fm(ax) and Fn(bx), Math. Comput. 29, 1-6, 1975.
- Eric Weisstein's World of Mathematics, Cyclotomic Polynomial
Programs
-
Haskell
a073093 = length . a210208_row -- Reinhard Zumkeller, Mar 18 2012
-
Magma
[n eq 1 select 1 else &+[p[2]: p in Factorization(n)]+1: n in [1..100]]; // Vincenzo Librandi, Jan 06 2017
-
Maple
seq(numtheory:-bigomega(n)+1, n=1..1000); # Robert Israel, Sep 06 2015
-
Mathematica
f[n_] := Plus @@ Flatten[ Table[1, {#[[2]]}] & /@ FactorInteger[n]]; Table[ f[2n], {n, 105}] (* Robert G. Wilson v, Dec 23 2004 *) A001221[n_] := (Length[ FactorInteger[n]]); SetAttributes[A001221, Listable]; A073093[n_]:=Length[Select[A001221[Divisors[n]], # == 1 &]]; (* Enrique Pérez Herrero, Nov 05 2009 *) PrimeOmega[Range[100]] + 1 (* Paolo Xausa, Nov 23 2024 *)
-
MuPAD
numlib::Omega (2*n)$ n=1..105 // Zerinvary Lajos, May 13 2008
-
PARI
a(n)=sum(k=1,n,if(1-polresultant(polcyclo(n),polcyclo(k)),1,0))
-
PARI
A073093(n)=bigomega(n)+1 \\ M. F. Hasler, Dec 08 2010
Formula
If n = Product (p_j^k_j), a(n) = 1 + Sum (k_j).
a(n) = if n=1 then 1 else a(A032742(n)) + 1. - Reinhard Zumkeller, Sep 24 2009
a(n) = max { a(d) ; d 1. - David W. Wilson, Dec 08 2010
G.f.: x/(1 - x) + Sum_{k>=2} floor(1/omega(k))*x^k/(1 - x^k), where omega(k) is the number of distinct prime factors (A001221). - Ilya Gutkovskiy, Jan 04 2017
Comments