cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073252 Coefficients of replicable function number "48g".

Original entry on oeis.org

1, 2, 1, 2, 4, 4, 5, 6, 9, 12, 13, 16, 21, 26, 29, 36, 46, 54, 62, 74, 90, 106, 122, 142, 171, 200, 227, 264, 311, 358, 408, 470, 545, 626, 709, 810, 933, 1062, 1198, 1362, 1555, 1760, 1980, 2238, 2536, 2858, 3205, 3602, 4063, 4560, 5092, 5704, 6400, 7150, 7966
Offset: 0

Views

Author

Michael Somos, Jul 22 2002

Keywords

Comments

Old name was: McKay-Thompson series of class 48g for the Monster group.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Combinatorial interpretation of sequence: [ X1, X2 ] = 2 strictly increasing sequences (possibly null) of odd positive integers; a(n) = #pairs with sum of entries = n.

Examples

			a(4) = 4: [ (1),(3) ],[ (3),(1) ],[ (),(1,3) ],[ (1,3),() ]
G.f. = 1 + 2*x + x^2 + 2*x^3 + 4*x^4 + 4*x^5 + 5*x^6 + 6*x^7 + 9*x^8 + 12*x^9 + ...
G.f. = 1/q + 2*q^11 + q^23 + 2*q^35 + 4*q^47 + 4*q^59 + 5*q^71 + 6*q^83 + ...
		

References

  • T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 116, q_2^2.

Crossrefs

Programs

  • Magma
    m:=80;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( ( (&*[1 + x^(2*j+1): j in [0..m+2]]) )^2 )); // G. C. Greubel, Sep 07 2023
    
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k+1))^2, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
    QP = QPochhammer; s = (QP[q^2]^2 / (QP[q] * QP[q^4]))^2 + O[q]^60; CoefficientList[s, q] (* Jean-François Alcover, Nov 14 2015, adapted from PARI *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2]^2, {x, 0, n}]; (* Michael Somos, Nov 03 2019 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod( i=1, (1+n)\2, 1 + x^(2*i - 1), 1 + x * O(x^n))^2, n))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / prod( i=1, n, 1 + (-x)^i, 1 + x * O(x^n))^2, n))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x*O(x^n); polcoeff( (eta(x^2 + A)^2 / eta(x + A) / eta(x^4 + A))^2, n))};
    
  • SageMath
    from sage.modular.etaproducts import qexp_eta
    m=80
    def f(x): return qexp_eta(QQ[['q']], m+2).subs(q=x)
    def A073252_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( (f(x^2)^2/(f(x)*f(x^4)))^2 ).list()
    A073252_list(m) # G. C. Greubel, Sep 07 2023

Formula

G.f.: 1 / (Prod_{k>0} 1 + (-x)^k)^2 = (Prod_{k>0} 1 + x^(2*k - 1))^2.
Expansion of q^(1/12) * (eta(q^2)^2 / (eta(q) * eta(q^4)))^2 in powers of q.
Expansion of chi(q)^2 = phi(q) / f(-q^2) = f(q) / psi(-q) = (phi(q) / f(q))^2 = (psi(q) / f(-q^4))^2 = (f(-q^2) / psi(-q))^2 = (phi(-q^2) / f(-q))^2 = (f(q) / f(-q^2))^2 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
Euler transform of period 4 sequence [2, -2, 2, 0, ...].
Equals the convolution square of A000700.
a(n) = (-1)^n * A022597(n).
a(n) ~ exp(Pi*sqrt(n/3)) / (2^(3/2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 27 2015
G.f.: exp(2*Sum_{k>=1} x^k/(k*(1 - (-x)^k))). - Ilya Gutkovskiy, Jun 07 2018
a(2*n) = A226622(n). a(2*n + 1) = 2 * A226635(n). - Michael Somos, Nov 03 2019

Extensions

Comments from Len Smiley.
New name from Michael Somos, Nov 03 2019