A073333 Decimal expansion of 1/(e - 1) = Sum_{k >= 1} exp(-k).
5, 8, 1, 9, 7, 6, 7, 0, 6, 8, 6, 9, 3, 2, 6, 4, 2, 4, 3, 8, 5, 0, 0, 2, 0, 0, 5, 1, 0, 9, 0, 1, 1, 5, 5, 8, 5, 4, 6, 8, 6, 9, 3, 0, 1, 0, 7, 5, 3, 9, 6, 1, 3, 6, 2, 6, 6, 7, 8, 7, 0, 5, 9, 6, 4, 8, 0, 4, 3, 8, 1, 7, 3, 9, 1, 6, 6, 9, 7, 4, 3, 2, 8, 7, 2, 0, 4, 7, 0, 9, 4, 0, 4, 8, 7, 5, 0, 5, 7, 6, 5, 4, 6, 2, 0
Offset: 0
Examples
0.581976706869326424385002005109011558546869301075396136266787059648...
References
- Calvin C. Clawson, Mathematical Mysteries: The Beauty and Magic of Numbers, Springer, 2013. See p. 225.
- Wolfram Research, Mathematica, Version 4.1.0.0, Help Browser, under the function NSumExtraTerms
Links
- G. C. Greubel, Table of n, a(n) for n = 0..20000
- Mohammad K. Azarian, A Limit Expression of 1/(e-1), Problem # 799, College Mathematics Journal, Vol. 36, No. 2, March 2005, p. 161. Solution appeared in Vol. 37, No. 2, March 2006, pp. 147-148.
- Mohammad K. Azarian, Euler's Number Via Difference Equations, International Journal of Contemporary Mathematical Sciences, Vol. 7, 2012, No. 22, pp. 1095-1102.
- H. W. Gould, A rearrangement of series based on a partition of the natural numbers, The Fibonacci Quarterly, Vol. 15, No. 1 (1977), pp. 67-72.
- Don Redmond, The Evaluation of Integral_{x=0..1} floor(-ln(x)) dx, Problem #153, Advanced Problem Archive, Missouri State University.
- Michel Waldschmidt, Continued fractions, Ecole de recherche CIMPA-Oujda, Théorie des Nombres et ses Applications, 18-29 mai 2015: Oujda (Maroc).
- Eric Weisstein's World of Mathematics, Continued Fraction Constants.
- Eric Weisstein's World of Mathematics, Generalized Continued Fraction.
- Index entries for transcendental numbers.
Programs
-
Magma
1/(Exp(1) - 1); // G. C. Greubel, Apr 09 2018
-
Maple
h:=x->sum(1/exp(n),n=1..x); evalf[110](h(1500)); evalf[110](h(4000));
-
Mathematica
RealDigits[N[Sum[Exp[-n], {n, 1, Infinity}], 120]][[1]] RealDigits[1/(E - 1), 10, 120][[1]] (* Eric W. Weisstein, May 08 2013 *)
-
PARI
suminf(k=1,exp(-k)) \\ Charles R Greathouse IV, Oct 04 2011
-
PARI
1/(exp(1)-1) \\ Charles R Greathouse IV, Oct 04 2011
Formula
Equals 1/(exp(1)-1). - Joseph Biberstine (jrbibers(AT)indiana.edu), Nov 03 2004
Also the unique real solution to log(1+x) - log(x) = 1. Equals 1-1/(1+1/(exp(1)-2)). Continued fraction is [0:1, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, ...]. - Gerald McGarvey, Aug 14 2004
Equals Sum_{n>=0} B_n/n!, where B_n is a Bernoulli number. - Fredrik Johansson, Oct 18 2006
1/(e-1) = 1/(1+2/(2+3/(3+4/(4+5/(5+...(continued fraction)))))). - Philippe Deléham, Mar 09 2013
Equals Integral_{x=0..oo} floor(x)*exp(-x). - Jean-François Alcover, Mar 20 2013
From Peter Bala, Oct 09 2013: (Start)
Equals (1/2)*Sum_{n >= 0} 1/sinh(2^n). (Gould, equation 22).
Define s(n) = Sum_{k = 1..n} 1/k! for n >= 1. Then 1/(e - 1) = 1 - Sum_{n >= 1} 1/( (n+1)!*s(n)*s(n+1) ) is a rapidly converging series of rationals (see A194807). Equivalently, 1/(e - 1) = 1 - 1!/(1*3) - 2!/(3*10) - 3!/(10*41) - ..., where [1, 3, 10, 41, ... ] is A002627.
We also have the alternating series 1/(e - 1) = 1!/(1*1) - 2!/(1*4) + 3!/(4*15) - 4!/(15*76) + ..., where [1, 1, 4, 15, 76, ...] is A002467. (End)
From Vaclav Kotesovec, Oct 13 2018: (Start)
Equals A185393 - 1.
Equals -LambertW(exp(1/(1 - exp(1))) / (1 - exp(1))).
Equals -1 - LambertW(-1, exp(1/(1 - exp(1))) / (1 - exp(1))). (End)
From Gleb Koloskov, Sep 03 2021: (Start)
Equals (coth(1/2)-1)/2 = (A307178-1)/2.
Equals 1/2 + 2*Integral_{x=0..oo} sin(x)/(exp(2*Pi*x)-1) dx.
Equals 1/2 + (1/Pi)*Integral_{x=0..1} sin(log(x)/(2*Pi))/(x-1) dx. (End)
Equals -lim_{n->oo} zeta(1-n, n)*n^(1 - n). - Vaclav Kotesovec and Peter Luschny, Nov 05 2021
Equals Integral_{x=0..1} floor(-log(x)) dx (see Redmond link). - Amiram Eldar, Oct 03 2023
Equals 1/2 + Sum_{k>=2} tanh(1/2^k)/2^k. - Antonio Graciá Llorente, Jan 21 2024
Extensions
Entry revised by N. J. A. Sloane, Apr 07 2006
Comments