A098881 Duplicate of A073333.
5, 8, 1, 9, 7, 6, 7, 0, 6, 8, 6, 9, 3, 2, 6, 4, 2, 4, 3, 8, 5, 0, 0, 2, 0, 0, 5, 1, 0, 9, 0, 1, 1, 5, 5
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a008619 = (+ 1) . (`div` 2) a008619_list = concatMap (\x -> [x,x]) [1..] -- Reinhard Zumkeller, Apr 02 2012
I:=[1,1,2]; [n le 3 select I[n] else Self(n-1)+Self(n-2)-Self(n-3): n in [1..100]]; // Vincenzo Librandi, Feb 04 2015
a:= n-> iquo(n+2, 2): seq(a(n), n=0..75);
Flatten[Table[{n,n},{n,35}]] (* Harvey P. Dale, Sep 20 2011 *) With[{c=Range[40]},Riffle[c,c]] (* Harvey P. Dale, Feb 23 2013 *) CoefficientList[Series[1/(1 - x - x^2 + x^3), {x, 0, 75}], x] (* Robert G. Wilson v, Feb 05 2015 *) LinearRecurrence[{1, 1, -1}, {1, 1, 2}, 75] (* Robert G. Wilson v, Feb 05 2015 *) Table[QBinomial[n, 2, -1], {n, 2, 75}] (* John Keith, Jun 28 2021 *)
a(n)=n\2+1
def A008619(n): return (n>>1)+1 # Chai Wah Wu, Jul 07 2022
a = lambda n: 1 if n==0 else a(n-1)+1 if 2.divides(n) else a(n-1) # Peter Luschny, Feb 05 2015
(2 to 99).map( / 2) // _Alonso del Arte, May 09 2020
a(4) = 4*a(3) + 1 = 4*4 + 1 = 17. Permutations of order 3 .. Length of first run * First position 123..3*1 132..2*1 213..1*2 231..2*2 312..1*3 321..1*3 a(4) = 3+2+2+4+3+3 = 17. - _Olivier Gérard_, Jul 07 2011
a056542 n = a056542_list !! (n-1) a056542_list = 0 : map (+ 1) (zipWith (*) [2..] a056542_list) -- Reinhard Zumkeller, Mar 24 2013
[n le 2 select n-1 else n*Self(n-1)+1: n in [1..20]]; // Bruno Berselli, Dec 13 2013
tmp=0; Join[{tmp}, Table[tmp=n*tmp+1, {n, 2, 100}]] (* T. D. Noe, Jul 12 2005 *) FoldList[ #1*#2 + 1 &, 0, Range[2, 21]] (* Robert G. Wilson v, Oct 11 2005 *)
1.58197670686932642438500200510901155854686930107539613626678705964804...
RealDigits[E/(E - 1), 10, 100][[1]] (* G. C. Greubel, Jun 29 2017 *)
exp(1)/(exp(1)-1)
from sympy import E print(list(map(int, str((E/(E-1)).n(88))[:-1].replace(".", "")))) # Michael S. Branicky, May 25 2022
1.392211191177332814376552878479816528373978385315...
1/(Exp(1) - 2); // G. C. Greubel, Apr 09 2018
RealDigits[1/(E - 2), 10, 105][[1]] (* T. D. Noe, May 07 2012 *) Fold[Function[#2 + #2/#1], 1, Reverse[Range[100]]] // N[#, 105]& // RealDigits // First (* Jean-François Alcover, Sep 19 2014 *)
default(realprecision,110); 1/(exp(1)-2) \\ Joerg Arndt, May 07 2012
0.9206735942077923189454135227164996028816556266505511523539604097220...
g:=x->sum(n/exp(n),n=1..x); evalf[110](g(1500)); evalf[110](g(4000));
RealDigits[E/(E-1)^2, 10, 105][[1]] (* Jean-François Alcover, Jan 28 2014 *)
1+sumalt(n=1,bernreal(2*n)*(1-2*n)/(2*n)!) \\ Gleb Koloskov, Jul 12 2021
0.268941421369995120748840758178163725634855359834943480723634...
RealDigits[N[1/(E + 1), 105]]
1/(exp(1)+1) \\ Charles R Greathouse IV, Dec 05 2011
0.432332358381693654053000252513757798296184227045212...
RealDigits[(1 - 1/E^2)/2 , 10, 104] // First
2.2906166927853624221...
A365307 = RealDigits[N[1/(2*E-5),#+1]][[1]][[1;;-2]]&;
1/(2*exp(1)-5).
2.163953413738... = 2 + 1/(6 + 1/(10 + 1/(14 + 1/(18 + ...)))).
RealDigits[Coth[1/2], 10, 120][[1]] (* or *) BesselI[-1/2, 1/2]/BesselI[1/2, 1/2]
cotanh(1/2) \\ Michel Marcus, Mar 28 2019
Comments