cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A098881 Duplicate of A073333.

Original entry on oeis.org

5, 8, 1, 9, 7, 6, 7, 0, 6, 8, 6, 9, 3, 2, 6, 4, 2, 4, 3, 8, 5, 0, 0, 2, 0, 0, 5, 1, 0, 9, 0, 1, 1, 5, 5
Offset: 0

Views

Author

Keywords

A008619 Positive integers repeated.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38
Offset: 0

Views

Author

Keywords

Comments

The floor of the arithmetic mean of the first n+1 positive integers. - Cino Hilliard, Sep 06 2003
Number of partitions of n into powers of 2 where no power is used more than three times, or 4th binary partition function (see A072170).
Number of partitions of n in which the greatest part is at most 2. - Robert G. Wilson v, Jan 11 2002
Number of partitions of n into at most 2 parts. - Jon Perry, Jun 16 2003
a(n) = #{k=0..n: k+n is even}. - Paul Barry, Sep 13 2003
Number of symmetric Dyck paths of semilength n+2 and having two peaks. E.g., a(6)=4 because we have UUUUUUU*DU*DDDDDDD, UUUUUU*DDUU*DDDDDD, UUUUU*DDDUUU*DDDDD and UUUU*DDDDUUUU*DDDD, where U=(1,1), D=(1,-1) and * indicates a peak. - Emeric Deutsch, Jan 12 2004
Smallest positive integer whose harmonic mean with another positive integer is n (for n > 0). For example, a(6)=4 is already given (as 4 is the smallest positive integer such that the harmonic mean of 4 (with 12) is 6) - but the harmonic mean of 2 (with -6) is also 6 and 2 < 4, so the two positive integer restrictions need to be imposed to rule out both 2 and -6.
Second outermost diagonal of Losanitsch's triangle (A034851). - Alonso del Arte, Mar 12 2006
Arithmetic mean of n-th row of A080511. - Amarnath Murthy, Mar 20 2003
a(n) is the number of ways to pay n euros (or dollars) with coins of one and two euros (respectively dollars). - Richard Choulet and Robert G. Wilson v, Dec 31 2007
Inverse binomial transform of A045623. - Philippe Deléham, Dec 30 2008
Coefficient of q^n in the expansion of (m choose 2)_q as m goes to infinity. - Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
Binomial transform of (-1)^n*A034008(n) = [1,0,1,-2,4,-8,16,-32,...]. - Philippe Deléham, Nov 15 2009
From Jon Perry_, Nov 16 2010: (Start)
Column sums of:
1 1 1 1 1 1...
1 1 1 1...
1 1...
..............
--------------
1 1 2 2 3 3... (End)
This sequence is also the half-convolution of the powers of 1 sequence A000012 with itself. For the definition of half-convolution see a comment on A201204, where also the rule for the o.g.f. is given. - Wolfdieter Lang, Jan 09 2012
a(n) is also the number of roots of the n-th Bernoulli polynomial in the right half-plane for n>0. - Michel Lagneau, Nov 08 2012
a(n) is the number of symmetry-allowed, linearly-independent terms at n-th order in the series expansion of the Exe vibronic perturbation matrix, H(Q) (cf. Viel & Eisfeld). - Bradley Klee, Jul 21 2015
a(n) is the number of distinct integers in the n-th row of Pascal's triangle. - Melvin Peralta, Feb 03 2016
a(n+1) for n >= 3 is the diameter of the Generalized Petersen Graph G(n, 1). - Nick Mayers, Jun 06 2016
The arithmetic function v_1(n,2) as defined in A289198. - Robert Price, Aug 22 2017
Also, this sequence is the second column in the triangle of the coefficients of the sum of two consecutive Fibonacci polynomials F(n+1, x) and F(n, x) (n>=0) in ascending powers of x. - Mohammad K. Azarian, Jul 18 2018
a(n+2) is the least k such that given any k integers, there exist two of them whose sum or difference is divisible by n. - Pablo Hueso Merino, May 09 2020
Column k = 2 of A051159. - John Keith, Jun 28 2021

References

  • D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 100.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 109, Eq. [6c]; p. 116, P(n,2).
  • D. Parisse, 'The tower of Hanoi and the Stern-Brocot Array', Thesis, Munich 1997

Crossrefs

Essentially same as A004526.
Harmonic mean of a(n) and A056136 is n.
a(n)=A010766(n+2, 2).
Cf. A010551 (partial products).
Cf. A263997 (a block spiral).
Cf. A289187.
Column 2 of A235791.

Programs

  • Haskell
    a008619 = (+ 1) . (`div` 2)
    a008619_list = concatMap (\x -> [x,x]) [1..]
    -- Reinhard Zumkeller, Apr 02 2012
    
  • Magma
    I:=[1,1,2]; [n le 3 select I[n] else Self(n-1)+Self(n-2)-Self(n-3): n in [1..100]]; // Vincenzo Librandi, Feb 04 2015
    
  • Maple
    a:= n-> iquo(n+2, 2): seq(a(n), n=0..75);
  • Mathematica
    Flatten[Table[{n,n},{n,35}]] (* Harvey P. Dale, Sep 20 2011 *)
    With[{c=Range[40]},Riffle[c,c]] (* Harvey P. Dale, Feb 23 2013 *)
    CoefficientList[Series[1/(1 - x - x^2 + x^3), {x, 0, 75}], x] (* Robert G. Wilson v, Feb 05 2015 *)
    LinearRecurrence[{1, 1, -1}, {1, 1, 2}, 75] (* Robert G. Wilson v, Feb 05 2015 *)
    Table[QBinomial[n, 2, -1], {n, 2, 75}] (* John Keith, Jun 28 2021 *)
  • PARI
    a(n)=n\2+1
    
  • Python
    def A008619(n): return (n>>1)+1 # Chai Wah Wu, Jul 07 2022
  • Sage
    a = lambda n: 1 if n==0 else a(n-1)+1 if 2.divides(n) else a(n-1) # Peter Luschny, Feb 05 2015
    
  • Scala
    (2 to 99).map( / 2) // _Alonso del Arte, May 09 2020
    

Formula

Euler transform of [1, 1].
a(n) = 1 + floor(n/2).
G.f.: 1/((1-x)(1-x^2)).
E.g.f.: ((3+2*x)*exp(x) + exp(-x))/4.
a(n) = a(n-1) + a(n-2) - a(n-3) = -a(-3-n).
a(0) = a(1) = 1 and a(n) = floor( (a(n-1) + a(n-2))/2 + 1 ).
a(n) = (2*n + 3 + (-1)^n)/4. - Paul Barry, May 27 2003
a(n) = Sum_{k=0..n} Sum_{j=0..k} Sum_{i=0..j} binomial(j, i)*(-2)^i. - Paul Barry, Aug 26 2003
E.g.f.: ((1+x)*exp(x) + cosh(x))/2. - Paul Barry, Sep 13 2003
a(n) = A108299(n-1,n)*(-1)^floor(n/2) for n > 0. - Reinhard Zumkeller, Jun 01 2005
a(n) = A108561(n+2,n) for n > 0. - Reinhard Zumkeller, Jun 10 2005
a(n) = A125291(A125293(n)) for n>0. - Reinhard Zumkeller, Nov 26 2006
a(n) = ceiling(n/2), n >= 1. - Mohammad K. Azarian, May 22 2007
INVERT transformation yields A006054 without leading zeros. INVERTi transformation yields negative of A124745 with the first 5 terms there dropped. - R. J. Mathar, Sep 11 2008
a(n) = A026820(n,2) for n > 1. - Reinhard Zumkeller, Jan 21 2010
a(n) = n - a(n-1) + 1 (with a(0)=1). - Vincenzo Librandi, Nov 19 2010
a(n) = A000217(n) / A110654(n). - Reinhard Zumkeller, Aug 24 2011
a(n+1) = A181971(n,n). - Reinhard Zumkeller, Jul 09 2012
1/(1+2/(2+3/(3+4/(4+5/(5+...(continued fraction))))) = 1/(e-1), see A073333. - Philippe Deléham, Mar 09 2013
a(n) = floor(A000217(n)/n), n > 0. - L. Edson Jeffery, Jul 26 2013
a(n) = n*a(n-1) mod (n+1) = -a(n-1) mod (n+1), the least positive residue modulo n+1 for each expression for n > 0, with a(0) = 1 (basically restatements of Vincenzo Librandi's formula). - Rick L. Shepherd, Apr 02 2014
a(n) = (a(0) + a(1) + ... + a(n-1))/a(n-1), where a(0) = 1. - Melvin Peralta, Jun 16 2015
a(n) = Sum_{k=0..n} (-1)^(n-k) * (k+1). - Rick L. Shepherd, Sep 18 2020
a(n) = a(n-2) + 1 for n >= 2. - Vladimír Modrák, Sep 29 2020
a(n) = A004526(n)+1. - Chai Wah Wu, Jul 07 2022

Extensions

Additional remarks from Daniele Parisse
Edited by N. J. A. Sloane, Sep 06 2009
Partially edited by Joerg Arndt, Mar 11 2010

A056542 a(n) = n*a(n-1) + 1, a(1) = 0.

Original entry on oeis.org

0, 1, 4, 17, 86, 517, 3620, 28961, 260650, 2606501, 28671512, 344058145, 4472755886, 62618582405, 939278736076, 15028459777217, 255483816212690, 4598708691828421, 87375465144740000, 1747509302894800001, 36697695360790800022, 807349297937397600485
Offset: 1

Views

Author

Henry Bottomley, Jun 20 2000

Keywords

Comments

For n >= 2 also operation count to create all permutations of n distinct elements using Algorithm L (lexicographic permutation generation) from Knuth's The Art of Computer Programming, Vol. 4, chapter 7.2.1.2. Sequence gives number of loop repetitions of the j search loop in step L2. - Hugo Pfoertner, Feb 06 2003
More directly: sum over all permutations of length n-1 of the product of the length of the first increasing run by the value of the first position. The recurrence follows from this definition. - Olivier Gérard, Jul 07 2011
This sequence shares divisibility properties with A000522; each of the primes in A072456 divide only a finite number of terms of this sequence. - T. D. Noe, Jul 07 2005
This sequence also represents the number of subdeterminant evaluations when calculation a determinant by Laplace recursive method. - Reinhard Muehlfeld, Sep 14 2010
Also, a(n) equals the number of non-isomorphic directed graphs of n+1 vertices with 1 component, where each vertex has exactly one outgoing edge, excluding loops and cycle graphs. - Stephen Dunn, Nov 30 2019

Examples

			a(4) = 4*a(3) + 1 = 4*4 + 1 = 17.
Permutations of order 3 .. Length of first run * First position
123..3*1
132..2*1
213..1*2
231..2*2
312..1*3
321..1*3
a(4) = 3+2+2+4+3+3 = 17. - _Olivier Gérard_, Jul 07 2011
		

References

  • D. E. Knuth: The Art of Computer Programming, Volume 4, Combinatorial Algorithms, Volume 4A, Enumeration and Backtracking. Pre-fascicle 2B, A draft of section 7.2.1.2: Generating all permutations. Available online; see link.

Crossrefs

Cf. A079751 (same recursion formula, but starting from a(3)=0), A038155, A038156, A080047, A080048, A080049.
Equals the row sums of A162995 triangle (n>=2). - Johannes W. Meijer, Jul 21 2009
Cf. A070213 (indices of primes).

Programs

  • Haskell
    a056542 n = a056542_list !! (n-1)
    a056542_list = 0 : map (+ 1) (zipWith (*) [2..] a056542_list)
    -- Reinhard Zumkeller, Mar 24 2013
    
  • Magma
    [n le 2 select n-1 else n*Self(n-1)+1: n in [1..20]]; // Bruno Berselli, Dec 13 2013
  • Mathematica
    tmp=0; Join[{tmp}, Table[tmp=n*tmp+1, {n, 2, 100}]] (* T. D. Noe, Jul 12 2005 *)
    FoldList[ #1*#2 + 1 &, 0, Range[2, 21]] (* Robert G. Wilson v, Oct 11 2005 *)

Formula

a(n) = floor((e-2)*n!).
a(n) = A002627(n) - n!.
a(n) = A000522(n) - 2*n!.
a(n) = n! - A056543(n).
a(n) = (n-1)*(a(n-1) + a(n-2)) + 2, n > 2. - Gary Detlefs, Jun 22 2010
1/(e - 2) = 2! - 2!/(1*4) - 3!/(4*17) - 4!/(17*86) - 5!/(86*517) - ... (see A002627 and A185108). - Peter Bala, Oct 09 2013
E.g.f.: (exp(x) - 1 - x) / (1 - x). - Ilya Gutkovskiy, Jun 26 2022

Extensions

More terms from James Sellers, Jul 04 2000

A185393 Decimal expansion of e/(e-1) = 1 + 1/e + 1/e^2 + ...

Original entry on oeis.org

1, 5, 8, 1, 9, 7, 6, 7, 0, 6, 8, 6, 9, 3, 2, 6, 4, 2, 4, 3, 8, 5, 0, 0, 2, 0, 0, 5, 1, 0, 9, 0, 1, 1, 5, 5, 8, 5, 4, 6, 8, 6, 9, 3, 0, 1, 0, 7, 5, 3, 9, 6, 1, 3, 6, 2, 6, 6, 7, 8, 7, 0, 5, 9, 6, 4, 8, 0, 4, 3, 8, 1, 7, 3, 9, 1, 6, 6, 9, 7, 4, 3, 2, 8, 7, 2, 0
Offset: 1

Views

Author

Keywords

Examples

			1.58197670686932642438500200510901155854686930107539613626678705964804...
		

References

  • Jean-Marie Monier, Analyse, Exercices corrigés, 2ème année, MP, Dunod, 1997, Exercice 3.3.29.a) pp. 286 and 307.

Crossrefs

Apart from 1st digit the same as A073333.

Programs

  • Mathematica
    RealDigits[E/(E - 1), 10, 100][[1]] (* G. C. Greubel, Jun 29 2017 *)
  • PARI
    exp(1)/(exp(1)-1)
    
  • Python
    from sympy import E
    print(list(map(int, str((E/(E-1)).n(88))[:-1].replace(".", "")))) # Michael S. Branicky, May 25 2022

Formula

Equals Sum_{n>=0} 1/exp(n). - Vaclav Kotesovec, Jan 30 2015
From Vaclav Kotesovec, Oct 13 2018: (Start)
Equals 1 - LambertW(exp(1/(1 - exp(1))) / (1 - exp(1))).
Equals -LambertW(-1, exp(1/(1 - exp(1))) / (1 - exp(1))).
(End)
Equals Sum_{k>=0} (-1)^k*B(k)/k!, where B(k) is the k-th Bernoulli number. - Amiram Eldar, May 08 2021
Equals Integral_{x=0..oo} exp(-floor(x)) dx (Monier). - Bernard Schott, May 08 2022
Equals lim_{n->oo} Sum_{k=1..n} (k/n)^n (via Tannery's theorem). - Stoyan Apostolov, May 24 2022

A194807 Decimal expansion of 1/(e-2).

Original entry on oeis.org

1, 3, 9, 2, 2, 1, 1, 1, 9, 1, 1, 7, 7, 3, 3, 2, 8, 1, 4, 3, 7, 6, 5, 5, 2, 8, 7, 8, 4, 7, 9, 8, 1, 6, 5, 2, 8, 3, 7, 3, 9, 7, 8, 3, 8, 5, 3, 1, 5, 2, 8, 7, 1, 2, 3, 5, 9, 1, 3, 2, 4, 5, 6, 7, 0, 8, 3, 2, 7, 9, 5, 7, 0, 4, 6, 1, 6, 1, 0, 9, 2, 6, 6, 9, 1, 7, 1, 0, 5, 8, 7, 2, 6, 7, 6, 1, 2, 9, 9, 8, 8, 8, 8, 5, 6
Offset: 1

Views

Author

Martin Janecke, May 06 2012

Keywords

Comments

The value of the continued fraction 1+1/(2+2/(3+3/(4+4/(5+5/(6+6/(...)))))).

Examples

			1.392211191177332814376552878479816528373978385315...
		

Crossrefs

Cf. A073333 (1/(e-1)), A002627, A185108.

Programs

  • Magma
    1/(Exp(1) - 2); // G. C. Greubel, Apr 09 2018
  • Mathematica
    RealDigits[1/(E - 2), 10, 105][[1]] (* T. D. Noe, May 07 2012 *)
    Fold[Function[#2 + #2/#1], 1, Reverse[Range[100]]] // N[#, 105]& // RealDigits // First (* Jean-François Alcover, Sep 19 2014 *)
  • PARI
    default(realprecision,110);
    1/(exp(1)-2)
    \\ Joerg Arndt, May 07 2012
    

Formula

Define s(n) = Sum_{k = 2..n} 1/k! for n >= 2. Then 1/(e - 2) = 2! - Sum_ {n >= 2} 1/( (n+1)!*s(n)*s(n+1) ) is a rapidly converging series of rationals. Cf. A073333. Equivalently, 1/(e - 2) = 2! - 2!/(1*4) - 3!/(4*17) - 4!/(17*86) - ..., where [1, 4, 17, 86, ... ] is A056542. Cf. A002627 and A185108. - Peter Bala, Oct 09 2013

A098875 Decimal expansion of Sum_{n>0} n/exp(n).

Original entry on oeis.org

9, 2, 0, 6, 7, 3, 5, 9, 4, 2, 0, 7, 7, 9, 2, 3, 1, 8, 9, 4, 5, 4, 1, 3, 5, 2, 2, 7, 1, 6, 4, 9, 9, 6, 0, 2, 8, 8, 1, 6, 5, 5, 6, 2, 6, 6, 5, 0, 5, 5, 1, 1, 5, 2, 3, 5, 3, 9, 6, 0, 4, 0, 9, 7, 2, 2, 0, 4, 7, 1, 9, 7, 4, 6, 5, 0, 2, 4, 4, 5, 6, 8, 6, 7, 3, 6, 9, 9, 7, 3, 2, 8, 3, 4, 3, 4, 7, 9, 4, 7, 2, 5, 3, 9, 7
Offset: 0

Views

Author

Joseph Biberstine (jrbibers(AT)indiana.edu), Nov 03 2004

Keywords

Comments

The expression generating this constant is a first degree Eulerian polynomial, in the "variable" e, with coefficient {1}, generated from sum_{n>=0} n^m/e^n, with m=1. See A008292. It approximates m!. - Richard R. Forberg, Feb 15 2015
See A255169 for the second degree polynomial and value.

Examples

			0.9206735942077923189454135227164996028816556266505511523539604097220...
		

Crossrefs

Programs

  • Maple
    g:=x->sum(n/exp(n),n=1..x); evalf[110](g(1500)); evalf[110](g(4000));
  • Mathematica
    RealDigits[E/(E-1)^2, 10, 105][[1]] (* Jean-François Alcover, Jan 28 2014 *)
  • PARI
    1+sumalt(n=1,bernreal(2*n)*(1-2*n)/(2*n)!) \\ Gleb Koloskov, Jul 12 2021

Formula

Equals exp(1)/(exp(1)-1)^2.
From Gleb Koloskov, Jul 12 2021: (Start)
Equals (1/2)/(cosh(1)-1).
Equals 1+Sum_{n>0} B(2*n)*(1-2*n)/(2*n)! = 1+Sum_{n>0} (A027641(2*n)/A027642(2*n))*A165747(n)/A010050(n).
Equals LambertW(x)*LambertW(-1,x), where x = (1/(1-e))*exp(1/(1-e)) = -A073333*exp(-A073333). (End)

A201776 Decimal expansion of 1/(e+1).

Original entry on oeis.org

2, 6, 8, 9, 4, 1, 4, 2, 1, 3, 6, 9, 9, 9, 5, 1, 2, 0, 7, 4, 8, 8, 4, 0, 7, 5, 8, 1, 7, 8, 1, 6, 3, 7, 2, 5, 6, 3, 4, 8, 5, 5, 3, 5, 9, 8, 3, 4, 9, 4, 3, 4, 8, 0, 7, 2, 3, 6, 3, 4, 0, 9, 2, 0, 8, 0, 9, 5, 9, 5, 4, 6, 9, 2, 9, 7, 9, 5, 3, 6, 0, 6, 1, 2, 5, 2, 5, 4, 6, 7, 9, 2, 4, 0, 1, 8, 7, 5, 4, 7, 0, 7, 8, 2, 5
Offset: 0

Views

Author

Michel Lagneau, Dec 04 2011

Keywords

Examples

			0.268941421369995120748840758178163725634855359834943480723634...
		

Crossrefs

Programs

A247847 Decimal expansion of m = (1-1/e^2)/2, one of Renyi's parking constants.

Original entry on oeis.org

4, 3, 2, 3, 3, 2, 3, 5, 8, 3, 8, 1, 6, 9, 3, 6, 5, 4, 0, 5, 3, 0, 0, 0, 2, 5, 2, 5, 1, 3, 7, 5, 7, 7, 9, 8, 2, 9, 6, 1, 8, 4, 2, 2, 7, 0, 4, 5, 2, 1, 2, 0, 5, 9, 2, 6, 5, 9, 2, 0, 5, 6, 3, 6, 7, 2, 9, 6, 3, 3, 1, 2, 9, 4, 9, 2, 5, 6, 1, 5, 5, 0, 3, 1, 4, 5, 0, 9, 3, 8, 7, 5, 4, 6, 7, 1, 4, 7, 5, 6, 2, 2, 4, 6
Offset: 0

Views

Author

Jean-François Alcover, Sep 25 2014

Keywords

Comments

Curiously, this Renyi parking constant is very close to the prime generated continued fraction A084255 (gap ~ 10^-7).

Examples

			0.432332358381693654053000252513757798296184227045212...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.3 Renyi's parking constant, p. 280.

Crossrefs

Programs

  • Mathematica
    RealDigits[(1 - 1/E^2)/2 , 10, 104] // First

Formula

Define s(n) = Sum_{k = 0..n} 2^k/k!. Then (1 - 1/e^2)/2 = Sum_{n >= 0} 2^n/( (n+1)!*s(n)*s(n+1) ). Cf. A073333. - Peter Bala, Oct 23 2023

A365307 Decimal expansion of 1/(2*e-5).

Original entry on oeis.org

2, 2, 9, 0, 6, 1, 6, 6, 9, 2, 7, 8, 5, 3, 6, 2, 4, 2, 2, 1, 0, 7, 5, 3, 3, 4, 1, 4, 5, 6, 1, 8, 4, 5, 0, 2, 5, 7, 8, 2, 0, 6, 8, 7, 3, 8, 6, 9, 0, 7, 3, 4, 6, 6, 5, 0, 5, 7, 1, 3, 1, 4, 9, 5, 0, 9, 9, 4, 1, 8, 8, 0, 3, 0, 4, 8, 7, 0, 1, 0, 8, 2, 5, 0, 1, 1, 9, 3, 9, 9
Offset: 1

Views

Author

Rok Cestnik, Aug 31 2023

Keywords

Comments

The continued fraction expansion is A081750 with initial term 5 omitted.

Examples

			2.2906166927853624221...
		

Crossrefs

Programs

  • Mathematica
    A365307 = RealDigits[N[1/(2*E-5),#+1]][[1]][[1;;-2]]&;
  • PARI
    1/(2*exp(1)-5).

Formula

Equals 2 + 1/(3 + 2/(4 + 3/(5 + 4/(6 + 5/( ... /(n+1 + n/(n+2 + ... ))))))).
From Peter Bala, Oct 23 2023: (Start)
Define s(n) = Sum_{k = 3..n} 1/k!. Then 1/(2*e - 5) = 3 - (1/2)*Sum_{n >= 3 } 1/( (n+1)!*s(n)*s(n+1) ) is a rapidly converging series of rationals. Cf. A073333 and A194807.
Equivalently, 1/(2*e - 5) = 3 - (1/2)*(3!/(1*5) + 4!/(5*26) + 5!/(26*157) + 6!/(157*1100) + ...), where [1, 5, 26, 157, 1100, ... ] is A185108. (End)

A307178 Decimal expansion of coth(1/2).

Original entry on oeis.org

2, 1, 6, 3, 9, 5, 3, 4, 1, 3, 7, 3, 8, 6, 5, 2, 8, 4, 8, 7, 7, 0, 0, 0, 4, 0, 1, 0, 2, 1, 8, 0, 2, 3, 1, 1, 7, 0, 9, 3, 7, 3, 8, 6, 0, 2, 1, 5, 0, 7, 9, 2, 2, 7, 2, 5, 3, 3, 5, 7, 4, 1, 1, 9, 2, 9, 6, 0, 8, 7, 6, 3, 4, 7, 8, 3, 3, 3, 9, 4, 8, 6, 5, 7, 4, 4, 0, 9, 4, 1, 8, 8, 0, 9, 7, 5, 0, 1, 1, 5, 3, 0, 9, 2, 4, 0, 4, 7, 7, 1, 6, 1, 4, 0, 8, 0, 9, 1, 7, 0
Offset: 1

Views

Author

Terry D. Grant, Mar 27 2019

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 14 2019

Examples

			2.163953413738... = 2 + 1/(6 + 1/(10 + 1/(14 + 1/(18 + ...)))).
		

Crossrefs

Cf. A016825 (continued fraction), A073333, A073747 (coth(1)).

Programs

  • Mathematica
    RealDigits[Coth[1/2], 10, 120][[1]] (* or *) BesselI[-1/2, 1/2]/BesselI[1/2, 1/2]
  • PARI
    cotanh(1/2) \\ Michel Marcus, Mar 28 2019

Formula

Equals (exp(1)+1)/(exp(1)-1).
Equals (BesselI(3/2,1/2)/BesselI(1/2,1/2))+2.
Equals BesselI(-1/2,1/2)/BesselI(1/2,1/2).
Equals 2 * Sum_{k>=0} B(2*k)/(2*k)!, where B(2*k) = A000367(k)/A002445(k) are the Bernoulli numbers. - Amiram Eldar, Nov 25 2020
Equals 2 * A073333 + 1. - Antonio Graciá Llorente, Jan 21 2024
Showing 1-10 of 12 results. Next