cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A073457 Numbers k such that phi(k) = pi(k) + 2.

Original entry on oeis.org

7, 9, 15, 16, 22, 54, 66, 120, 210
Offset: 1

Views

Author

Labos Elemer, Aug 02 2002

Keywords

Comments

Solutions to A000010(x) = A000720(x)+m, where m=+2; finite for any fixed value of m.

Examples

			8 primes below 22 = {2,3,5,7,11,13,17,19}; 10 terms in RRS[22]={1,3,5,7,9,13,15,17,19,21}, so 22 is here.
		

Crossrefs

Programs

  • Magma
    [n: n in [2..1000] | EulerPhi(n) eq #PrimesUpTo(n)+2]; // Vincenzo Librandi, May 10 2015
  • Maple
    with(numtheory): A073457:=n->`if`(phi(n) = pi(n) + 2, n, NULL): seq(A073457(n), n=1..210); # Wesley Ivan Hurt, May 12 2015
  • Mathematica
    Do[s=EulerPhi[n]-PrimePi[n]; If[Equal[s, 2], Print[n]], {n, 10000}]
    Select[Range[250],EulerPhi[#]-PrimePi[#]==2&] (* Harvey P. Dale, Jun 22 2025 *)

A073456 Numbers n such that phi(n) = pi(n)+1.

Original entry on oeis.org

1, 5, 36, 48, 84
Offset: 1

Views

Author

Labos Elemer, Aug 02 2002

Keywords

Examples

			15 primes below 48 = {2,3,5,7,11,13,17,19,23,29,31,37,41,43,47}; 16 terms in RRS[48]={1,5,7,11,13,17,19,23,25,29,31,35,37,41,43,47}, so 48 is here.
		

Crossrefs

Programs

  • Mathematica
    Do[s=EulerPhi[n]-PrimePi[n]; If[Equal[s, 1], Print[n]], {n, 1, 10000}]
    Select[Range[100],EulerPhi[#]==PrimePi[#]+1&] (* Harvey P. Dale, Oct 23 2024 *)

Formula

Solutions to A000010(x)=A000720(x)+k, where k=+1; finite for any fixed value of k.

Extensions

Definition modified by Harvey P. Dale, Oct 23 2024

A073464 a(n) = phi(n) mod PrimePi(n).

Original entry on oeis.org

0, 0, 0, 1, 2, 2, 0, 2, 0, 0, 4, 0, 0, 2, 2, 2, 6, 2, 0, 4, 2, 4, 8, 2, 3, 0, 3, 8, 8, 8, 5, 9, 5, 2, 1, 0, 6, 0, 4, 1, 12, 0, 6, 10, 8, 1, 1, 12, 5, 2, 9, 4, 2, 8, 8, 4, 12, 7, 16, 6, 12, 0, 14, 12, 2, 9, 13, 6, 5, 10, 4, 9, 15, 19, 15, 18, 3, 12, 10, 10, 18, 13, 1, 18, 19, 10, 17, 16, 0, 0, 20, 12
Offset: 2

Views

Author

Labos Elemer, Aug 02 2002

Keywords

Crossrefs

Programs

  • Magma
    [EulerPhi(n) mod #PrimesUpTo(n): n in [2..100]]; // Vincenzo Librandi, Dec 11 2018
  • Mathematica
    a(n)=Table[Mod[EulerPhi[w], PrimePi[w]], {w, 2, 1000}]
  • PARI
    a(n) = eulerphi(n) % primepi(n); \\ Michel Marcus, Dec 11 2018
    

Formula

a(n) = A000010(n) mod A000720(n).
Showing 1-3 of 3 results.