A073485 Product of any number of consecutive primes; squarefree numbers with no gaps in their prime factorization.
1, 2, 3, 5, 6, 7, 11, 13, 15, 17, 19, 23, 29, 30, 31, 35, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 77, 79, 83, 89, 97, 101, 103, 105, 107, 109, 113, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 210, 211, 221, 223, 227, 229, 233
Offset: 1
Examples
105 is a term, as 105 = 3*5*7 with consecutive prime factors.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000 (first 1000 terms from T. D. Noe)
Crossrefs
Programs
-
Haskell
a073485 n = a073485_list !! (n-1) a073485_list = filter ((== 1) . a192280) [1..] -- Reinhard Zumkeller, May 28 2012, Aug 26 2011
-
Maple
isA073485 := proc(n) local plist,p,i ; plist := sort(convert(numtheory[factorset](n),list)) ; for i from 1 to nops(plist) do p := op(i,plist) ; if modp(n,p^2) = 0 then return false; end if; if i > 1 then if nextprime(op(i-1,plist)) <> p then return false; end if; end if; end do: true; end proc: for n from 1 to 1000 do if isA073485(n) then printf("%d,",n); end if; end do: # R. J. Mathar, Jan 12 2016 # second Maple program: q:= proc(n) uses numtheory; n=1 or issqrfree(n) and (s-> nops(s)=1+pi(max(s))-pi(min(s)))(factorset(n)) end: select(q, [$1..288])[]; # Alois P. Heinz, Jan 27 2022
-
Mathematica
f[n_] := FoldList[ Times, 1, Prime[ Range[n, n + 3]]]; lst = {}; k = 1; While[k < 55, AppendTo[lst, f@k]; k++ ]; Take[ Union@ Flatten@ lst, 65] (* Robert G. Wilson v, Jun 11 2010 *)
-
PARI
list(lim)=my(v=List(primes(primepi(lim))),p,t);for(e=2, log(lim+.5)\log(2), p=1; t=prod(i=1,e-1,prime(i)); forprime(q=prime(e), lim, t*=q/p; if(t>lim,next(2)); listput(v,t); p=nextprime(p+1))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Oct 24 2012
Formula
a(n) ~ n log n. - Charles R Greathouse IV, Oct 24 2012
Extensions
Alternative description added to the name by Antti Karttunen, Oct 29 2016
Comments