cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 34 results. Next

A356939 MM-numbers of multisets of intervals. Products of primes indexed by members of A073485.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 20, 22, 24, 25, 26, 27, 30, 31, 32, 33, 34, 36, 39, 40, 41, 44, 45, 47, 48, 50, 51, 52, 54, 55, 59, 60, 62, 64, 65, 66, 67, 68, 72, 75, 78, 80, 81, 82, 83, 85, 88, 90, 93, 94, 96, 99, 100, 102, 104, 108
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2022

Keywords

Comments

An interval such as {3,4,5} is a set of positive integers with all differences of adjacent elements equal to 1.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the multiset of multisets with MM-number n to be formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. The size of this multiset of multisets is A302242(n). For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The initial terms and corresponding multisets of multisets:
   1: {}
   2: {{}}
   3: {{1}}
   4: {{},{}}
   5: {{2}}
   6: {{},{1}}
   8: {{},{},{}}
   9: {{1},{1}}
  10: {{},{2}}
  11: {{3}}
  12: {{},{},{1}}
  13: {{1,2}}
  15: {{1},{2}}
  16: {{},{},{},{}}
		

Crossrefs

The initial version is A356940.
Intervals are counted by A000012, A001227, ranked by A073485.
Other types: A107742, A356936, A356937, A356938.
Other conditions: A302478, A302492, A356930, A356935, A356944, A356955.
A000041 counts integer partitions, strict A000009.
A000688 counts factorizations into prime powers.
A001055 counts factorizations.
A001221 counts prime divisors, sum A001414.
A001222 counts prime factors with multiplicity.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    chQ[y_]:=Or[Length[y]<=1,Union[Differences[y]]=={1}];
    Select[Range[100],And@@chQ/@primeMS/@primeMS[#]&]

A356936 Number of multiset partitions of the multiset of prime indices of n into intervals. Number of factorizations of n into members of A073485.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 08 2022

Keywords

Comments

An interval is a set of positive integers with all differences of adjacent elements equal to 1.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(n) multiset partitions for n = 6, 30, 36, 90, 180:
  {12}    {123}      {12}{12}      {12}{23}      {12}{123}
  {1}{2}  {1}{23}    {1}{2}{12}    {2}{123}      {1}{12}{23}
          {3}{12}    {1}{1}{2}{2}  {1}{2}{23}    {1}{2}{123}
          {1}{2}{3}                {2}{3}{12}    {3}{12}{12}
                                   {1}{2}{2}{3}  {1}{1}{2}{23}
                                                 {1}{2}{3}{12}
                                                 {1}{1}{2}{2}{3}
The a(n) factorizations for n = 6, 30, 36, 90, 180:
  (6)    (30)     (6*6)      (3*30)     (6*30)
  (2*3)  (5*6)    (2*3*6)    (6*15)     (5*6*6)
         (2*15)   (2*2*3*3)  (3*5*6)    (2*3*30)
         (2*3*5)             (2*3*15)   (2*6*15)
                             (2*3*3*5)  (2*3*5*6)
                                        (2*2*3*15)
                                        (2*2*3*3*5)
		

Crossrefs

A000688 counts factorizations into prime powers.
A001055 counts factorizations.
A001221 counts prime divisors, sum A001414.
A001222 counts prime factors with multiplicity.
A356069 counts gapless divisors, initial A356224 (complement A356225).
A056239 adds up prime indices, row sums of A112798.
Intervals are counted by A000012, A001227, ranked by A073485.
Other conditions: A050320, A050330, A322585, A356931, A356945.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    chQ[y_]:=Or[Length[y]<=1,Union[Differences[y]]=={1}];
    Table[Length[Select[facs[n],And@@chQ/@primeMS/@#&]],{n,100}]

A001227 Number of odd divisors of n.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 4, 1, 2, 3, 2, 2, 4, 2, 2, 2, 3, 2, 4, 2, 2, 4, 2, 1, 4, 2, 4, 3, 2, 2, 4, 2, 2, 4, 2, 2, 6, 2, 2, 2, 3, 3, 4, 2, 2, 4, 4, 2, 4, 2, 2, 4, 2, 2, 6, 1, 4, 4, 2, 2, 4, 4, 2, 3, 2, 2, 6, 2, 4, 4, 2, 2, 5, 2, 2, 4, 4, 2, 4, 2, 2, 6, 4, 2, 4, 2, 4, 2, 2, 3, 6, 3, 2, 4, 2, 2, 8
Offset: 1

Views

Author

Keywords

Comments

Also (1) number of ways to write n as difference of two triangular numbers (A000217), see A136107; (2) number of ways to arrange n identical objects in a trapezoid. - Tom Verhoeff
Also number of partitions of n into consecutive positive integers including the trivial partition of length 1 (e.g., 9 = 2+3+4 or 4+5 or 9 so a(9)=3). (Useful for cribbage players.) See A069283. - Henry Bottomley, Apr 13 2000
This has been described as Sylvester's theorem, but to reduce ambiguity I suggest calling it Sylvester's enumeration. - Gus Wiseman, Oct 04 2022
a(n) is also the number of factors in the factorization of the Chebyshev polynomial of the first kind T_n(x). - Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 28 2003
Number of factors in the factorization of the polynomial x^n+1 over the integers. See also A000005. - T. D. Noe, Apr 16 2003
a(n) = 1 if and only if n is a power of 2 (see A000079). - Lekraj Beedassy, Apr 12 2005
Number of occurrences of n in A049777. - Philippe Deléham, Jun 19 2005
For n odd, n is prime if and only if a(n) = 2. - George J. Schaeffer (gschaeff(AT)andrew.cmu.edu), Sep 10 2005
Also number of partitions of n such that if k is the largest part, then each of the parts 1,2,...,k-1 occurs exactly once. Example: a(9)=3 because we have [3,3,2,1],[2,2,2,2,1] and [1,1,1,1,1,1,1,1,1]. - Emeric Deutsch, Mar 07 2006
Also the number of factors of the n-th Lucas polynomial. - T. D. Noe, Mar 09 2006
Lengths of rows of triangle A182469;
Denoted by Delta_0(n) in Glaisher 1907. - Michael Somos, May 17 2013
Also the number of partitions p of n into distinct parts such that max(p) - min(p) < length(p). - Clark Kimberling, Apr 18 2014
Row sums of triangle A247795. - Reinhard Zumkeller, Sep 28 2014
Row sums of triangle A237048. - Omar E. Pol, Oct 24 2014
A069288(n) <= a(n). - Reinhard Zumkeller, Apr 05 2015
A000203, A000593 and this sequence have the same parity: A053866. - Omar E. Pol, May 14 2016
a(n) is equal to the number of ways to write 2*n-1 as (4*x + 2)*y + 4*x + 1 where x and y are nonnegative integers. Also a(n) is equal to the number of distinct values of k such that k/(2*n-1) + k divides (k/(2*n-1))^(k/(2*n-1)) + k, (k/(2*n-1))^k + k/(2*n-1) and k^(k/(2*n-1)) + k/(2*n-1). - Juri-Stepan Gerasimov, May 23 2016, Jul 15 2016
Also the number of odd divisors of n*2^m for m >= 0. - Juri-Stepan Gerasimov, Jul 15 2016
a(n) is odd if and only if n is a square or twice a square. - Juri-Stepan Gerasimov, Jul 17 2016
a(n) is also the number of subparts in the symmetric representation of sigma(n). For more information see A279387 and A237593. - Omar E. Pol, Nov 05 2016
a(n) is also the number of partitions of n into an odd number of equal parts. - Omar E. Pol, May 14 2017 [This follows from the g.f. Sum_{k >= 1} x^k/(1-x^(2*k)). - N. J. A. Sloane, Dec 03 2020]

Examples

			G.f. = q + q^2 + 2*q^3 + q^4 + 2*q^5 + 2*q^6 + 2*q^7 + q^8 + 3*q^9 + 2*q^10 + ...
From _Omar E. Pol_, Nov 30 2020: (Start)
For n = 9 there are three odd divisors of 9; they are [1, 3, 9]. On the other hand there are three partitions of 9 into consecutive parts: they are [9], [5, 4] and [4, 3, 2], so a(9) = 3.
Illustration of initial terms:
                              Diagram
   n   a(n)                         _
   1     1                        _|1|
   2     1                      _|1 _|
   3     2                    _|1  |1|
   4     1                  _|1   _| |
   5     2                _|1    |1 _|
   6     2              _|1     _| |1|
   7     2            _|1      |1  | |
   8     1          _|1       _|  _| |
   9     3        _|1        |1  |1 _|
  10     2      _|1         _|   | |1|
  11     2    _|1          |1   _| | |
  12     2   |1            |   |1  | |
...
a(n) is the number of horizontal line segments in the n-th level of the diagram. For more information see A286001. (End)
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 487 Entry 47.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 306.
  • J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4).
  • Ronald. L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics, 2nd ed. (Addison-Wesley, 1994), see exercise 2.30 on p. 65.
  • P. A. MacMahon, Combinatory Analysis, Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 28.

Crossrefs

If this sequence counts gapless sets by sum (by Sylvester's enumeration), these sets are ranked by A073485 and A356956. See also A055932, A066311, A073491, A107428, A137921, A333217, A356224, A356841, A356845.
Dirichlet inverse is A327276.

Programs

  • Haskell
    a001227 = sum . a247795_row
    -- Reinhard Zumkeller, Sep 28 2014, May 01 2012, Jul 25 2011
    
  • Magma
    [NumberOfDivisors(n)/Valuation(2*n, 2): n in [1..100]]; // Vincenzo Librandi, Jun 02 2019
    
  • Maple
    for n from 1 by 1 to 100 do s := 0: for d from 1 by 2 to n do if n mod d = 0 then s := s+1: fi: od: print(s); od:
    A001227 := proc(n) local a,d;
        a := 1 ;
        for d in ifactors(n)[2] do
            if op(1,d) > 2 then
                a := a*(op(2,d)+1) ;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Jun 18 2015
  • Mathematica
    f[n_] := Block[{d = Divisors[n]}, Count[ OddQ[d], True]]; Table[ f[n], {n, 105}] (* Robert G. Wilson v, Aug 27 2004 *)
    Table[Total[Mod[Divisors[n], 2]],{n,105}] (* Zak Seidov, Apr 16 2010 *)
    f[n_] := Block[{d = DivisorSigma[0, n]}, If[ OddQ@ n, d, d - DivisorSigma[0, n/2]]]; Array[f, 105] (* Robert G. Wilson v *)
    a[ n_] := Sum[  Mod[ d, 2], { d, Divisors[ n]}]; (* Michael Somos, May 17 2013 *)
    a[ n_] := DivisorSum[ n, Mod[ #, 2] &]; (* Michael Somos, May 17 2013 *)
    Count[Divisors[#],?OddQ]&/@Range[110] (* _Harvey P. Dale, Feb 15 2015 *)
    (* using a262045 from A262045 to compute a(n) = number of subparts in the symmetric representation of sigma(n) *)
    (* cl = current level, cs = current subparts count *)
    a001227[n_] := Module[{cs=0, cl=0, i, wL, k}, wL=a262045[n]; k=Length[wL]; For[i=1, i<=k, i++, If[wL[[i]]>cl, cs++; cl++]; If[wL[[i]]Hartmut F. W. Hoft, Dec 16 2016 *)
    a[n_] := DivisorSigma[0, n / 2^IntegerExponent[n, 2]]; Array[a, 100] (* Amiram Eldar, Jun 12 2022 *)
  • PARI
    {a(n) = sumdiv(n, d, d%2)}; /* Michael Somos, Oct 06 2007 */
    
  • PARI
    {a(n) = direuler( p=2, n, 1 / (1 - X) / (1 - kronecker( 4, p) * X))[n]}; /* Michael Somos, Oct 06 2007 */
    
  • PARI
    a(n)=numdiv(n>>valuation(n,2)) \\ Charles R Greathouse IV, Mar 16 2011
    
  • PARI
    a(n)=sum(k=1,round(solve(x=1,n,x*(x+1)/2-n)),(k^2-k+2*n)%(2*k)==0) \\ Charles R Greathouse IV, May 31 2013
    
  • PARI
    a(n)=sumdivmult(n,d,d%2) \\ Charles R Greathouse IV, Aug 29 2013
    
  • Python
    from functools import reduce
    from operator import mul
    from sympy import factorint
    def A001227(n): return reduce(mul,(q+1 for p, q in factorint(n).items() if p > 2),1) # Chai Wah Wu, Mar 08 2021
  • SageMath
    def A001227(n): return len([1 for d in divisors(n) if is_odd(d)])
    [A001227(n) for n in (1..80)]  # Peter Luschny, Feb 01 2012
    

Formula

Dirichlet g.f.: zeta(s)^2*(1-1/2^s).
Comment from N. J. A. Sloane, Dec 02 2020: (Start)
By counting the odd divisors f n in different ways, we get three different ways of writing the ordinary generating function. It is:
A(x) = x + x^2 + 2*x^3 + x^4 + 2*x^5 + 2*x^6 + 2*x^7 + x^8 + 3*x^9 + 2*x^10 + ...
= Sum_{k >= 1} x^(2*k-1)/(1-x^(2*k-1))
= Sum_{k >= 1} x^k/(1-x^(2*k))
= Sum_{k >= 1} x^(k*(k+1)/2)/(1-x^k) [Ramanujan, 2nd notebook, p. 355.].
(This incorporates comments from Vladeta Jovovic, Oct 16 2002 and Michael Somos, Oct 30 2005.) (End)
G.f.: x/(1-x) + Sum_{n>=1} x^(3*n)/(1-x^(2*n)), also L(x)-L(x^2) where L(x) = Sum_{n>=1} x^n/(1-x^n). - Joerg Arndt, Nov 06 2010
a(n) = A000005(n)/(A007814(n)+1) = A000005(n)/A001511(n).
Multiplicative with a(p^e) = 1 if p = 2; e+1 if p > 2. - David W. Wilson, Aug 01 2001
a(n) = A000005(A000265(n)). - Lekraj Beedassy, Jan 07 2005
Moebius transform is period 2 sequence [1, 0, ...] = A000035, which means a(n) is the Dirichlet convolution of A000035 and A057427.
a(n) = A113414(2*n). - N. J. A. Sloane, Jan 24 2006 (corrected Nov 10 2007)
a(n) = A001826(n) + A001842(n). - Reinhard Zumkeller, Apr 18 2006
Sequence = M*V = A115369 * A000005, where M = an infinite lower triangular matrix and V = A000005, d(n); as a vector: [1, 2, 2, 3, 2, 4, ...]. - Gary W. Adamson, Apr 15 2007
Equals A051731 * [1,0,1,0,1,...]; where A051731 is the inverse Mobius transform. - Gary W. Adamson, Nov 06 2007
a(n) = A000005(n) - A183063(n).
a(n) = d(n) if n is odd, or d(n) - d(n/2) if n is even, where d(n) is the number of divisors of n (A000005). (See the Weisstein page.) - Gary W. Adamson, Mar 15 2011
Dirichlet convolution of A000005 and A154955 (interpreted as a flat sequence). - R. J. Mathar, Jun 28 2011
a(A000079(n)) = 1; a(A057716(n)) > 1; a(A093641(n)) <= 2; a(A038550(n)) = 2; a(A105441(n)) > 2; a(A072502(n)) = 3. - Reinhard Zumkeller, May 01 2012
a(n) = 1 + A069283(n). - R. J. Mathar, Jun 18 2015
a(A002110(n)/2) = n, n >= 1. - Altug Alkan, Sep 29 2015
a(n*2^m) = a(n*2^i), a((2*j+1)^n) = n+1 for m >= 0, i >= 0 and j >= 0. a((2*x+1)^n) = a((2*y+1)^n) for positive x and y. - Juri-Stepan Gerasimov, Jul 17 2016
Conjectures: a(n) = A067742(n) + 2*A131576(n) = A082647(n) + A131576(n). - Omar E. Pol, Feb 15 2017
a(n) = A000005(2n) - A000005(n) = A099777(n)-A000005(n). - Danny Rorabaugh, Oct 03 2017
L.g.f.: -log(Product_{k>=1} (1 - x^(2*k-1))^(1/(2*k-1))) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Jul 30 2018
G.f.: (psi_{q^2}(1/2) + log(1-q^2))/log(q), where psi_q(z) is the q-digamma function. - Michael Somos, Jun 01 2019
a(n) = A003056(n) - A238005(n). - Omar E. Pol, Sep 12 2021
Sum_{k=1..n} a(k) ~ n*log(n)/2 + (gamma + log(2)/2 - 1/2)*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 27 2022
Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A000005(k) = log(2) (A002162). - Amiram Eldar, Mar 01 2023
a(n) = Sum_{i=1..n} (-1)^(i+1)*A135539(n,i). - Ridouane Oudra, Apr 13 2023

A073491 Numbers having no prime gaps in their factorization.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 23, 24, 25, 27, 29, 30, 31, 32, 35, 36, 37, 41, 43, 45, 47, 48, 49, 53, 54, 59, 60, 61, 64, 67, 71, 72, 73, 75, 77, 79, 81, 83, 89, 90, 96, 97, 101, 103, 105, 107, 108, 109, 113, 120, 121, 125, 127, 128, 131, 135
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 03 2002

Keywords

Comments

A073490(a(n)) = 0; subsequences are: A000040, A000961, A006094, A002110, A000142, A073485.
A137721(n) = number of terms not greater than n; A137794(a(n))=1; complement of A073492. - Reinhard Zumkeller, Feb 11 2008
Essentially the same as A066311. - R. J. Mathar, Sep 23 2008
The Heinz numbers of the partitions that have no gaps. The Heinz number of a partition p = [p_1, p_2, ..., p_r] is defined as Product_{j=1..r} (p_j-th prime) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). Example: (i) 18 (= 2*3*3) is in the sequence because it is the Heinz number of the partition [1,2,2]; (ii) 10 (= 2*5) is not in the sequence because it is the Heinz number of the partition [1,3]. - Emeric Deutsch, Oct 02 2015

Examples

			360 is a term, as 360 = 2*2*2*3*3*5 with consecutive prime factors.
		

Crossrefs

Programs

  • Haskell
    a073491 n = a073491_list !! (n-1)
    a073491_list = filter ((== 0) . a073490) [1..]
    -- Reinhard Zumkeller, Dec 20 2013
    
  • Mathematica
    ok[n_] := (p = FactorInteger[n][[All, 1]]; PrimePi[Last@p] - PrimePi[First@p] == Length[p] - 1); Select[Range[135], ok] (* Jean-François Alcover, Apr 29 2011 *)
    npgQ[n_]:=Module[{f=Transpose[FactorInteger[n]][[1]]},f==Prime[Range[ PrimePi[ f[[1]]], PrimePi[f[[-1]]]]]]; Join[{1},Select[Range[2,200],npgQ]] (* Harvey P. Dale, Apr 12 2013 *)
  • PARI
    is(n)=my(f=factor(n)[,1]); for(i=2,#f,if(precprime(f[i]-1)>f[i-1], return(0))); 1 \\ Charles R Greathouse IV, Apr 28 2015

A107742 G.f.: Product_{j>=1} Product_{i>=1} (1 + x^(i*j)).

Original entry on oeis.org

1, 1, 2, 4, 6, 10, 17, 25, 38, 59, 86, 125, 184, 260, 369, 524, 726, 1005, 1391, 1894, 2576, 3493, 4687, 6272, 8373, 11090, 14647, 19294, 25265, 32991, 42974, 55705, 72025, 92895, 119349, 152965, 195592, 249280, 316991, 402215, 508932, 642598, 809739, 1017850, 1276959, 1599015, 1997943, 2491874, 3102477, 3855165, 4782408, 5922954
Offset: 0

Views

Author

Vladeta Jovovic, Jun 11 2005

Keywords

Comments

From Gus Wiseman, Sep 13 2022: (Start)
Also the number of multiset partitions of integer partitions of n into intervals, where an interval is a set of positive integers with all differences of adjacent elements equal to 1. For example, the a(1) = 1 through a(4) = 6 multiset partitions are:
{{1}} {{2}} {{3}} {{4}}
{{1},{1}} {{1,2}} {{1},{3}}
{{1},{2}} {{2},{2}}
{{1},{1},{1}} {{1},{1,2}}
{{1},{1},{2}}
{{1},{1},{1},{1}}
Intervals are counted by A001227, ranked by A073485.
The initial version is A007294.
The strict version is A327731.
The version for gapless multisets instead of intervals is A356941.
The case of strict partitions is A356957.
Also the number of multiset partitions of integer partitions of n into distinct constant blocks. For example, the a(1) = 1 through a(4) = 6 multiset partitions are:
{{1}} {{2}} {{3}} {{4}}
{{1,1}} {{1,1,1}} {{2,2}}
{{1},{2}} {{1},{3}}
{{1},{1,1}} {{1,1,1,1}}
{{2},{1,1}}
{{1},{1,1,1}}
Constant multisets are counted by A000005, ranked by A000961.
The non-strict version is A006171.
The unlabeled version is A089259.
The non-constant block version is A261049.
The version for twice-partitions is A279786, factorizations A296131.
Also the number of multiset partitions of integer partitions of n into constant blocks of odd length. For example, a(1) = 1 through a(4) = 6 multiset partitions are:
{{1}} {{2}} {{3}} {{4}}
{{1},{1}} {{1,1,1}} {{1},{3}}
{{1},{2}} {{2},{2}}
{{1},{1},{1}} {{1},{1,1,1}}
{{1},{1},{2}}
{{1},{1},{1},{1}}
The strict version is A327731 (also).
(End)

Crossrefs

Product_{k>=1} (1 + x^k)^sigma_m(k): this sequence (m=0), A192065 (m=1), A288414 (m=2), A288415 (m=3), A301548 (m=4), A301549 (m=5), A301550 (m=6), A301551 (m=7), A301552 (m=8).
A000041 counts integer partitions, strict A000009.
A000110 counts set partitions.
A072233 counts partitions by sum and length.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^(i*j)), {i, 1, nmax}, {j, 1, nmax/i}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 04 2017 *)
    nmax = 50; CoefficientList[Series[Product[(1+x^k)^DivisorSigma[0, k], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 23 2018 *)
    nmax = 50; s = 1 + x; Do[s *= Sum[Binomial[DivisorSigma[0, k], j]*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; Take[CoefficientList[s, x], nmax + 1] (* Vaclav Kotesovec, Aug 28 2018 *)
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    chQ[y_]:=Length[y]<=1||Union[Differences[y]]=={1};
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],And@@chQ/@#&]],{n,0,5}] (* Gus Wiseman, Sep 13 2022 *)
  • PARI
    a(n)=polcoeff(prod(k=1,n,prod(j=1,n\k,1+x^(j*k)+x*O(x^n))),n) /* Paul D. Hanna */
    
  • PARI
    N=66;  x='x+O('x^N); gf=1/prod(j=0,N, eta(x^(2*j+1))); gf=prod(j=1,N,(1+x^j)^numdiv(j)); Vec(gf) /* Joerg Arndt, May 03 2008 */
    
  • PARI
    {a(n)=if(n==0,1,polcoeff(exp(sum(m=1,n,sigma(m)*x^m/(1-x^(2*m)+x*O(x^n))/m)),n))} /* Paul D. Hanna, Mar 28 2009 */

Formula

Euler transform of A001227.
Weigh transform of A000005.
G.f. satisfies: log(A(x)) = Sum_{n>=1} A109386(n)/n*x^n, where A109386(n) = Sum_{d|n} d*Sum_{m|d} (m mod 2). - Paul D. Hanna, Jun 26 2005
G.f.: A(x) = exp( Sum_{n>=1} sigma(n)*x^n/(1-x^(2n)) /n ). - Paul D. Hanna, Mar 28 2009
G.f.: Product_{n>=1} Q(x^n) where Q(x) is the g.f. of A000009. - Joerg Arndt, Feb 27 2014
a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A109386(k)*a(n-k) for n > 0. - Seiichi Manyama, Jun 04 2017
Conjecture: log(a(n)) ~ Pi*sqrt(n*log(n)/6). - Vaclav Kotesovec, Aug 29 2018

Extensions

More terms from Paul D. Hanna, Jun 26 2005

A325160 Products of distinct, non-consecutive primes. Squarefree numbers not divisible by any two consecutive primes.

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 11, 13, 14, 17, 19, 21, 22, 23, 26, 29, 31, 33, 34, 37, 38, 39, 41, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 106, 107, 109, 110, 111, 113, 115, 118, 119
Offset: 1

Views

Author

Gus Wiseman, Apr 05 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions into distinct non-consecutive parts (counted by A003114). The nonsquarefree case is A319630, which gives the Heinz numbers of integer partitions with no consecutive parts (counted by A116931).
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 6, 52, 515, 5146, 51435, 514416, 5144232, 51442384, ... . Apparently, the asymptotic density of this sequence exists and equals 0.51442... . - Amiram Eldar, Sep 24 2022

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   5: {3}
   7: {4}
  10: {1,3}
  11: {5}
  13: {6}
  14: {1,4}
  17: {7}
  19: {8}
  21: {2,4}
  22: {1,5}
  23: {9}
  26: {1,6}
  29: {10}
  31: {11}
  33: {2,5}
  34: {1,7}
  37: {12}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Min@@Differences[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]>1&]
  • PARI
    isok(k) = {if (issquarefree(k), my(v = apply(primepi, factor(k)[,1])); ! #select(x->(v[x+1]-v[x] == 1), [1..#v-1]));} \\ Michel Marcus, Jan 09 2021

A073490 Number of prime gaps in factorization of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 03 2002

Keywords

Comments

A137723(n) is the smallest number of the first occurring set of exactly n consecutive numbers with at least one prime gap in their factorization: a(A137723(n)+k)>0 for 0<=kA137723(n)-1)=a(A137723(n)+n)=0. - Reinhard Zumkeller, Feb 09 2008

Examples

			84 = 2*2*3*7 with one gap between 3 and 7, therefore a(84) = 1;
110 = 2*5*11 with two gaps: between 2 and 5 and between 5 and 11, therefore a(110) = 2.
		

Crossrefs

Programs

  • Haskell
    a073490 1 = 0
    a073490 n = length $ filter (> 1) $ zipWith (-) (tail ips) ips
       where ips = map a049084 $ a027748_row n
    -- Reinhard Zumkeller, Jul 04 2012
    
  • Maple
    A073490 := proc(n)
        local a,plist ;
        plist := sort(convert(numtheory[factorset](n),list)) ;
        a := 0 ;
        for i from 2 to nops(plist) do
            if op(i,plist) <> nextprime(op(i-1,plist)) then
                a := a+1 ;
            end if;
        end do:
        a;
    end proc:
    seq(A073490(n),n=1..110) ; # R. J. Mathar, Oct 27 2019
  • Mathematica
    gaps[n_Integer/;n>0]:=If[n===1, 0, Complement[Prime[PrimePi[Rest[ # ]]-1], # ]&[First/@FactorInteger[n]]]; Table[Length[gaps[n]], {n, 1, 120}] (* Wouter Meeussen, Oct 30 2004 *)
    pa[n_, k_] := If[k == NextPrime[n], 0, 1]; Table[Total[pa @@@ Partition[First /@ FactorInteger[n], 2, 1]], {n, 120}] (* Jayanta Basu, Jul 01 2013 *)
  • Python
    from sympy import primefactors, nextprime
    def a(n):
        pf = primefactors(n)
        return sum(p2 != nextprime(p1) for p1, p2 in zip(pf[:-1], pf[1:]))
    print([a(n) for n in range(1, 121)]) # Michael S. Branicky, Oct 14 2021

Formula

a(n) = A073484(A007947(n)).
a(A000040(n))=0; a(A000961(n))=0; a(A006094(n))=0; a(A002110(n))=0; a(A073485(n))=0.
a(A073486(n))>0; a(A073487(n)) = 1; a(A073488(n))=2; a(A073489(n))=3.
a(n)=0 iff A073483(n) = 1.
a(A097889(n)) = 0. - Reinhard Zumkeller, Nov 20 2004
0 <= a(m*n) <= a(m) + a(n) + 1. A137794(n) = 0^a(n). - Reinhard Zumkeller, Feb 11 2008

Extensions

More terms from Franklin T. Adams-Watters, May 19 2006

A166469 Number of divisors of n which are not multiples of consecutive primes.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 3, 4, 2, 4, 2, 4, 3, 5, 2, 4, 2, 6, 4, 4, 2, 5, 3, 4, 4, 6, 2, 5, 2, 6, 4, 4, 3, 5, 2, 4, 4, 8, 2, 6, 2, 6, 4, 4, 2, 6, 3, 6, 4, 6, 2, 5, 4, 8, 4, 4, 2, 7, 2, 4, 6, 7, 4, 6, 2, 6, 4, 6, 2, 6, 2, 4, 4, 6, 3, 6, 2, 10, 5, 4, 2, 8, 4, 4, 4, 8, 2, 6, 4, 6, 4, 4, 4, 7, 2, 6, 6, 9, 2, 6, 2, 8, 5
Offset: 1

Views

Author

Matthew Vandermast, Nov 05 2009

Keywords

Comments

Links various subsequences of A025487 with an unusual number of important sequences, including the Fibonacci, Lucas, and other generalized Fibonacci sequences (see cross-references).
If a number is a product of any number of consecutive primes, the number of its divisors which are not multiples of n consecutive primes is always a Fibonacci n-step number. See also A073485, A167447.

Examples

			Since 3 of 30's 8 divisors (6, 15, and 30) are multiples of 2 or more consecutive primes, a(30) = 8 - 3 = 5.
		

Crossrefs

A(A002110(n)) = A000045(n+2); A(A097250(n)) = A000032(n+1). For more relationships involving Fibonacci and Lucas numbers, see A166470-A166473, comment on A081341.
A(A061742(n)) = A001045(n+2); A(A006939(n)) = A000085(n+1); A(A212170(n)) = A000142(n+1). A(A066120(n)) = A166474(n+1).

Programs

  • Mathematica
    Array[DivisorSum[#, 1 &, FreeQ[Differences@ PrimePi@ FactorInteger[#][[All, 1]], 1] &] &, 105] (* Michael De Vlieger, Dec 16 2017 *)
  • PARI
    A296210(n) = { if(1==n,return(0)); my(ps=factor(n)[,1], pis=vector(length(ps),i,primepi(ps[i])), diffsminusones = vector(length(pis)-1,i,(pis[i+1]-pis[i])-1)); !factorback(diffsminusones); };
    A166469(n) = sumdiv(n,d,!A296210(d)); \\ Antti Karttunen, Dec 15 2017

Formula

a) If n has no prime gaps in its factorization (cf. A073491), then, if the canonical factorization of n into prime powers is the product of p_i^(e_i), a(n) is the sum of all products of one or more nonadjacent exponents, plus 1. For example, if A001221(n) = 3, a(n) = e_1*e_3 + e_1 + e_2 + e_3 + 1. If A001221(n) = k, the total number of terms always equals A000045(k+2).
The answer can also be computed in k steps, by finding the answers for the products of the first i powers, for i = 1 to i = k. Let the result of the i-th step be called r(i). r(1) = e_1 + 1; r(2) = e_1 + e_2 +1; for i > 2, r(i) = r(i-1) + e_i * r(i-2).
b) If n has prime gaps in its factorization, express it as a product of the minimum number of A073491's members possible. Then apply either of the above methods to each of those members, and multiply the results to get a(n). a(n) = A000005(n) iff n has no pair of consecutive primes as divisors.
a(n) = Sum_{d|n} (1-A296210(d)). - Antti Karttunen, Dec 15 2017

Extensions

Edited by Matthew Vandermast, May 24 2012

A097889 Numbers that are products of (at least two) consecutive primes.

Original entry on oeis.org

6, 15, 30, 35, 77, 105, 143, 210, 221, 323, 385, 437, 667, 899, 1001, 1147, 1155, 1517, 1763, 2021, 2310, 2431, 2491, 3127, 3599, 4087, 4199, 4757, 5005, 5183, 5767, 6557, 7387, 7429, 8633, 9797, 10403, 11021, 11663, 12317, 12673, 14351, 15015, 16637, 17017
Offset: 1

Views

Author

Bart la Bastide (bart(AT)xs4all.nl), Sep 21 2004

Keywords

Comments

Subsequence of A073485; A073490(a(n)) = 0. - Reinhard Zumkeller, Nov 20 2004
A proper subset of A073485. - Robert G. Wilson v, Jun 11 2010
A192280(a(n)) * (1 - A010051(a(n))) = 1. - Reinhard Zumkeller, Aug 26 2011 [corrected by Jason Yuen, Aug 29 2024]
The Heinz numbers of the partitions into at least 2 consecutive parts. The Heinz number of an integer partition p = [p_1, p_2, ..., p_r] is defined as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). Examples: (i) 105 (=3*5*7) is in the sequence because it is the Heinz number of the partition [2,3,4]; (ii) 108 (= 2*2*3*3*3) is not in the sequence because it is the Heinz number of the partition [1,1,2,2,2]. - Emeric Deutsch, Oct 02 2015

Examples

			1001 = 7 * 11 * 13.
		

Crossrefs

Cf. A050936.
Intersection of A073485 and A002808.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a097889 n = a097889_list !! (n-1)
    a097889_list = f $ singleton (6, 2, 3) where
       f s = y : f (insert (w, p, q') $ insert (w `div` p, a151800 p, q') s')
             where w = y * q'; q' = a151800 q
                   ((y, p, q), s') = deleteFindMin s
    -- Reinhard Zumkeller, May 12 2015, Aug 26 2011
    
  • Maple
    isA097889 := proc(n)
        local plist,p,i ;
        plist := sort(convert(numtheory[factorset](n),list)) ;
        if nops(plist) < 2 then
            return false;
        end if;
        for i from 1 to nops(plist) do
            p := op(i,plist) ;
            if modp(n,p^2) = 0 then
                return false;
            end if;
            if i > 1 then
                if nextprime(op(i-1,plist)) <> p then
                    return false;
                end if;
            end if;
        end do:
        true;
    end proc:
    for n from 1 to 1000 do
        if isA097889(n) then
            printf("%d,",n);
        end if;
    end do: # R. J. Mathar, Jan 12 2016
  • Mathematica
    a = {}; Do[ AppendTo[a, Apply[ Times, (Prime /@ Partition[ Range[30], n, i]), 1]], {n, 2, 6}, {i, n - 1}]; Take[ Union[ Flatten[ a]], 45] (* Robert G. Wilson v, Sep 24 2004 *)
  • PARI
    list(lim)=my(v=List(), p, t); for(e=2, log(lim+.5)\log(2), p=1; t=prod(i=1, e-1, prime(i)); forprime(q=prime(e), lim, t*=q/p; if(t>lim, next(2)); listput(v, t); p=nextprime(p+1))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Oct 24 2012
    
  • Python
    import heapq
    from sympy import sieve
    sieve.extend(10**6)
    primes = list(sieve._list)
    def prime(n): return primes[n-1]
    def aupton(terms, verbose=False):
        p = prime(1)*prime(2); h = [(p, 1, 2)]; nextcount = 3; alst = []
        while len(alst) < terms:
            (v, s, l) = heapq.heappop(h)
            alst.append(v)
            if verbose: print(f"{v}, [= Prod_{{i = {s}..{l}}} prime(i)]")
            if v >= p:
                p *= prime(nextcount)
                heapq.heappush(h, (p, 1, nextcount))
                nextcount += 1
            v //= prime(s); s += 1; l += 1; v *= prime(l)
            heapq.heappush(h, (v, s, l))
        return alst
    print(aupton(45)) # Michael S. Branicky, Jun 15 2021

Formula

a(n) ~ n^2 log^2 n. - Charles R Greathouse IV, Oct 24 2012

Extensions

More terms from Robert G. Wilson v, Sep 24 2004
Data corrected for n > 41 by Reinhard Zumkeller, Aug 26 2011

A350841 Heinz numbers of integer partitions with a difference < -1 and a conjugate difference < -1.

Original entry on oeis.org

20, 28, 40, 44, 52, 56, 63, 68, 76, 80, 84, 88, 92, 99, 100, 104, 112, 116, 117, 124, 126, 132, 136, 140, 148, 152, 153, 156, 160, 164, 168, 171, 172, 176, 184, 188, 189, 196, 198, 200, 204, 207, 208, 212, 220, 224, 228, 232, 234, 236, 244, 248, 252, 260, 261
Offset: 1

Views

Author

Gus Wiseman, Jan 26 2022

Keywords

Comments

We define a difference of a partition to be a difference of two adjacent parts.

Examples

			The terms together with their prime indices begin:
   20: (3,1,1)
   28: (4,1,1)
   40: (3,1,1,1)
   44: (5,1,1)
   52: (6,1,1)
   56: (4,1,1,1)
   63: (4,2,2)
   68: (7,1,1)
   76: (8,1,1)
   80: (3,1,1,1,1)
   84: (4,2,1,1)
   88: (5,1,1,1)
   92: (9,1,1)
   99: (5,2,2)
		

Crossrefs

Heinz number rankings are in parentheses below.
Taking just one condition gives (A073492) and (A065201), counted by A239955.
These partitions are counted by A350839.
A000041 = integer partitions, strict A000009.
A034296 = partitions with no gaps (A073491), strict A001227 (A073485).
A090858 = partitions with a single gap of size 1 (A325284).
A116931 = partitions with no successions (A319630), strict A003114.
A116932 = partitions with no successions or gaps of size 1, strict A025157.
A350842 = partitions with no gaps of size 1, strict A350844, sets A005314.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],(Min@@Differences[Reverse[primeMS[#]]]<-1)&&(Min@@Differences[conj[primeMS[#]]]<-1)&]
Showing 1-10 of 34 results. Next