A073631 Nonprimes k such that k divides 3^(k-1) - 2^(k-1).
1, 65, 133, 529, 793, 1105, 1649, 1729, 2059, 2321, 2465, 2701, 2821, 4187, 5185, 6305, 6541, 6601, 6697, 6817, 7471, 7613, 8113, 8911, 10585, 10963, 11521, 13213, 13333, 13427, 14701, 14981, 15841, 18721, 19171, 19201, 19909, 21349, 21667, 22177, 26065
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Robert Israel)
Crossrefs
Programs
-
Magma
[n: n in [1..3*10^4] | not IsPrime(n) and IsDivisibleBy(3^(n-1)-2^(n-1), n)]; // Vincenzo Librandi, May 20 2015
-
Maple
1,op(select(n -> (3 &^ (n-1) - 2 &^ (n-1) mod n = 0 and not isprime(n)), [seq(2*i+1,i=1..10000)])); # Robert Israel, May 19 2015
-
Mathematica
Select[Range[3 10^4], ! PrimeQ[#] && Mod[3^(# - 1) - 2^(# - 1), #] == 0 &] (* Vincenzo Librandi, May 20 2015 *) Select[Range[3*10^4], PowerMod[3, # - 1, #] == PowerMod[2, # - 1, #] && !PrimeQ[#] &] (* Amiram Eldar, Mar 27 2021 *)
-
PARI
isok(n) = ! isprime(n) && !((3^(n-1)-2^(n-1)) % n); \\ Michel Marcus, Nov 28 2013
Extensions
Term 14701 added and more terms from Michel Marcus, Nov 28 2013
Comments