cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A130058 Numbers m such that k = m*23^2 divides 3^(k-1) - 2^(k-1).

Original entry on oeis.org

1, 67, 89, 133, 199, 331, 617, 793, 881, 5281, 8911, 11419, 13333, 22177, 23585, 26467, 35113, 35839, 38897, 40657, 44023, 54913, 65869, 67849, 70819, 92929, 105469, 107185, 114247, 124279, 144673, 153253, 159259, 185329, 196945, 225589
Offset: 1

Views

Author

Alexander Adamchuk, May 04 2007

Keywords

Comments

All prime p>3 divide 3^(p-1) - 2^(p-1). It appears that 1 and 529 = 23^2 are the only perfect squares in A073631. Most terms of A073631 are squarefree. First 50 nonsquarefree terms of A073631 are the multiples of 23^2.
Conjecture: All nonsquarefree terms of A073631 are the multiples of 23^2.
Prime terms are listed in A130059. Note that the many terms (namely, 1, 133, 793, 8911, 13333, 22177, 26467, 38897, 44023, 54913, 65869, ...) also belong to A073631.

Crossrefs

Programs

  • Mathematica
    Do[ k=n*23^2; f=PowerMod[ 3, k-1, k ] - PowerMod[ 2, k-1, k ]; If[ IntegerQ[ f/k ], Print[ n ] ], {n,1,1000000} ]

A130059 Primes p such that k=p*23^2 divides 3^(k-1) - 2^(k-1); or primes in A130058.

Original entry on oeis.org

67, 89, 199, 331, 617, 881, 5281, 35839, 22270249, 24939553, 395297101, 2414250301, 40834167001, 184879309516177, 207091473814443440700193, 30576308069075829315234744136241, 175651822579831731574054050278935909201, 109606420475170539243380866438311892933511638772789857
Offset: 1

Views

Author

Alexander Adamchuk, May 04 2007

Keywords

Comments

Prime divisors of (3^528 - 2^528) / 23^2 that are congruent to 1 modulo 11.

Crossrefs

Extensions

Definition clarified by Max Alekseyev, Mar 09 2009

A285300 Numbers k such that 3^(k-1) == 2^(k-1) !== 1 (mod k).

Original entry on oeis.org

65, 133, 529, 793, 1649, 2059, 2321, 4187, 5185, 6305, 6541, 6697, 6817, 7471, 7613, 8113, 10963, 11521, 13213, 13333, 13427, 14701, 14981, 19171, 19201, 19909, 21349, 21667, 22177, 26065, 26467, 32873, 35443, 36569, 37333, 38897, 42121, 42127, 44023, 47081
Offset: 1

Views

Author

Thomas Ordowski, Apr 16 2017

Keywords

Comments

All terms are odd composite numbers. There are no pseudoprimes to bases 2 or 3 in this sequence.
Are there infinitely many numbers of this kind?
From Max Alekseyev, Apr 16 2017: (Start)
Also, Fermat pseudoprimes base 2/3 that are not Fermat pseudoprimes base 2.
Also, the set difference of A073631 and either of ({1} U A001567), ({1} U A005935), or ({1} U A052155). (End)

Examples

			2^64 = 18446744073709551616 = 65 * 283796062672454640 + 16 and 3^64 = 3433683820292512484657849089281 = 65 * 52825904927577115148582293681 + 16. Therefore 65 is in the sequence.
Note: a(3) = 529 = 23^2 and a(40) = 47081 = 23^2 * 89.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local t;
      t:= 3 &^(n-1) mod n;
      if t = 1 then return false fi;
      t = 2 &^(n-1) mod n;
    end proc:
    select(filter, [seq(i,i=3..10^5,2)]); # Robert Israel, Apr 27 2017
  • Mathematica
    Select[Range[2, 10^5], PowerMod[2, # - 1, #] == PowerMod[3, # - 1, #] != 1 &] (* Giovanni Resta, Apr 16 2017 *)
  • PARI
    is(n) = Mod(3, n)^(n-1)==2^(n-1) && Mod(2, n)^(n-1)!=1 \\ Felix Fröhlich, Apr 27 2017

Extensions

More terms from Giovanni Resta, Apr 16 2017

A320282 a(n) = (3^(prime(n)-1) - 2^(prime(n)-1))/prime(n).

Original entry on oeis.org

13, 95, 5275, 40565, 2528305, 20376755, 1364211535, 788845655845, 6641614785575, 4056609907500605, 296528399013300025, 2544627551941066235, 188573149984760785495, 121907205372133465501165, 79832689778949397606269355, 694937020886283311634222725, 461241110187445155009340352195
Offset: 3

Views

Author

Jianing Song, Oct 09 2018

Keywords

Comments

Fermat quotients in base 3/2.
For n > 3, a(n) is divisible by 5.
Primes p such that p^2 divides 3^(p-1) - 2^(p-1) (base-3/2 Wieferich primes) are p = 23, ... What's the next?

Examples

			For n = 3, prime(3) = 5 and a(3) = (3^4 - 2^4)/5 = 13.
For n = 4, prime(4) = 7 and a(4) = (3^6 - 2^6)/7 = 95.
		

Crossrefs

Cf. A073631 (base-3/2 Fermat pseudoprimes).

Programs

  • Magma
    [(3^(p-1) - 2^(p-1))  div p: p in PrimesInInterval(4, 100)]; // Vincenzo Librandi, Oct 12 2018
  • Mathematica
    p[n_]:=Prime[n]; a[n_]:=(3^(p[n]-1) - 2^(p[n]-1))/p[n]; Array[a, 50, 3] (* Stefano Spezia, Oct 11 2018 *)
  • PARI
    a(n) = my(p=prime(n)); (3^(p-1) - 2^(p-1))/p
    
Showing 1-4 of 4 results.