cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A130059 Primes p such that k=p*23^2 divides 3^(k-1) - 2^(k-1); or primes in A130058.

Original entry on oeis.org

67, 89, 199, 331, 617, 881, 5281, 35839, 22270249, 24939553, 395297101, 2414250301, 40834167001, 184879309516177, 207091473814443440700193, 30576308069075829315234744136241, 175651822579831731574054050278935909201, 109606420475170539243380866438311892933511638772789857
Offset: 1

Views

Author

Alexander Adamchuk, May 04 2007

Keywords

Comments

Prime divisors of (3^528 - 2^528) / 23^2 that are congruent to 1 modulo 11.

Crossrefs

Extensions

Definition clarified by Max Alekseyev, Mar 09 2009

A073631 Nonprimes k such that k divides 3^(k-1) - 2^(k-1).

Original entry on oeis.org

1, 65, 133, 529, 793, 1105, 1649, 1729, 2059, 2321, 2465, 2701, 2821, 4187, 5185, 6305, 6541, 6601, 6697, 6817, 7471, 7613, 8113, 8911, 10585, 10963, 11521, 13213, 13333, 13427, 14701, 14981, 15841, 18721, 19171, 19201, 19909, 21349, 21667, 22177, 26065
Offset: 1

Views

Author

Benoit Cloitre, Aug 29 2002

Keywords

Comments

Terms 1,65,2059,6305,19171,... are also in A001047
All primes p>3 divide 3^(p-1) - 2^(p-1). It appears that a(1) = 1 and a(4) = 529 = 23^2 are the only perfect squares in a(n). Most terms of a(n) are squarefree. First 50 nonsquarefree terms of a(n) are the multiples of 23^2. Conjecture: All nonsquarefree terms of a(n) are the multiples of 23^2. Numbers n such that k=n*23^2 divides 3^(k-1) - 2^(k-1) are listed in A130058 = {1, 67, 89, 133, 199, 331, 617, 793, 881, 5281, 8911, 1419, 13333,...}. - Alexander Adamchuk, May 04 2007
Contains all Carmichael numbers (A002997) that are not divisible by 3. - Robert Israel, May 19 2015

Crossrefs

Cf. A001047 (3^n - 2^n), A002997.
Cf. A038876, A097934 (primes p such that p divides 3^((p-1)/2) - 2^((p-1)/2)).
Cf. A130059, A130058 (numbers n such that k=n*23^2 divides 3^(k-1) - 2^(k-1)).

Programs

  • Magma
    [n: n in [1..3*10^4] | not IsPrime(n) and IsDivisibleBy(3^(n-1)-2^(n-1), n)]; // Vincenzo Librandi, May 20 2015
  • Maple
    1,op(select(n -> (3 &^ (n-1) - 2 &^ (n-1) mod n = 0 and not isprime(n)), [seq(2*i+1,i=1..10000)])); # Robert Israel, May 19 2015
  • Mathematica
    Select[Range[3 10^4], ! PrimeQ[#] && Mod[3^(# - 1) - 2^(# - 1), #] == 0 &] (* Vincenzo Librandi, May 20 2015 *)
    Select[Range[3*10^4], PowerMod[3, # - 1, #] == PowerMod[2, # - 1, #] && !PrimeQ[#] &] (* Amiram Eldar, Mar 27 2021 *)
  • PARI
    isok(n) = ! isprime(n) && !((3^(n-1)-2^(n-1)) % n); \\ Michel Marcus, Nov 28 2013
    

Extensions

Term 14701 added and more terms from Michel Marcus, Nov 28 2013

A130062 Nonprime numbers k such that k divides 3^((k+1)/2) - 2^((k+1)/2) - 1.

Original entry on oeis.org

1, 21, 49, 105, 1729, 2465, 2877, 7305, 10585, 15841, 31021, 31621, 32041, 41041, 46657, 52633, 54145, 75361, 83333, 115921, 126217, 162401, 172081, 211141, 282133, 284649, 294409, 334153, 383161, 399001, 417241, 449065, 488881, 530881
Offset: 1

Views

Author

Alexander Adamchuk, May 05 2007

Keywords

Comments

The perfect squares in listed terms are a(1) = 1, a(3) = 49 = 7^2, a(13) = 32041 = 179^2 and a(29) = 383161 = 619^2.
Note that primes {7,179,619} are the terms of A130060 or primes in A127074.

Crossrefs

Cf. A097934 (primes p that divide 3^((p-1)/2) - 2^((p-1)/2)).
Cf. A038876 (primes p such that 6 is a square mod p).

Programs

  • Mathematica
    Select[ 2*Range[100000]-1, !PrimeQ[ # ] && Mod[ PowerMod[3,(#+1)/2,# ] - PowerMod[2,(#+1)/2,# ] - 1, # ] == 0 & ]

Extensions

More terms from Ryan Propper, Jan 07 2008

A130060 Primes p such that p^2 divides 3^p - 2^p - 1; or primes in A127074(n).

Original entry on oeis.org

2, 3, 7, 179, 619, 17807
Offset: 1

Views

Author

Alexander Adamchuk, May 05 2007

Keywords

Comments

The prime p divides 3^p - 2^p - 1. Quotients (3^p - 2^p - 1)/p, where p = Prime[n], are listed in A127071. - Alexander Adamchuk, Jan 31 2008
a(7) > 10^9. [From D. S. McNeil, Mar 16 2009]

Crossrefs

Cf. A127071, A127072, A127073, A127074 = numbers n such that n^2 divides 3^n - 2^n - 1. Cf. A130058, A130059, A130061, A130062, A130063.

Programs

  • Mathematica
    Do[ n=Prime[k]; f=PowerMod[3,n,n^2] - PowerMod[2,n,n^2] - 1; If[ IntegerQ[ f/n^2 ], Print[n] ], {k,1,100000} ]

Extensions

2 more terms found by Ryan Propper, Jan 01 2008.
Incorrect a(7), a(8) removed by D. S. McNeil, Mar 16 2009. (The old version was 2,3,7,179,619,17807,135433,1376257.)

A130061 Numbers k that divide 3^((k-1)/2) - 2^((k-1)/2) - 1.

Original entry on oeis.org

1, 3, 35, 147, 195, 219, 291, 399, 579, 583, 723, 939, 1011, 1023, 1227, 1299, 1371, 1443, 1731, 1803, 2019, 2307, 2499, 2811, 3003, 3027, 3099, 3387, 3459, 3603, 3747, 3891, 3963, 4467, 4623, 4827, 4971, 5187, 5259, 5331, 5403, 5619, 5979, 6051, 6267
Offset: 1

Views

Author

Alexander Adamchuk, May 05 2007

Keywords

Comments

It appears that all terms are composite except a(1) = 1 and a(2) = 3. Most listed terms are divisible by 3, except {1, 35, 583, 70643, ...}.

Crossrefs

Cf. A097934 (primes p that divide 3^((p-1)/2) - 2^((p-1)/2)).
Cf. A038876 (primes p such that 6 is a square mod p).

Programs

  • Mathematica
    Select[ Range[10000], Mod[ PowerMod[3,(#-1)/2,# ] - PowerMod[2,(#-1)/2,# ] -1, # ]==0&]

A130063 Primes p such that p divides 3^((p+1)/2) - 2^((p+1)/2) - 1.

Original entry on oeis.org

23, 47, 71, 73, 97, 167, 191, 193, 239, 241, 263, 311, 313, 337, 359, 383, 409, 431, 433, 457, 479, 503, 577, 599, 601, 647, 673, 719, 743, 769, 839, 863, 887, 911, 937, 983, 1009, 1031, 1033, 1103, 1129, 1151, 1153, 1201, 1223, 1249, 1297, 1319, 1321, 1367
Offset: 1

Views

Author

Alexander Adamchuk, May 05 2007

Keywords

Comments

Primes = 1 or 23 mod 24. Hence, together with 2, primes such that (2/p) = 1 = (3/p) where (k/p) is the Legendre symbol. - Charles R Greathouse IV, Apr 06 2012

Crossrefs

Cf. A097934 = Primes p such that p divides 3^((p-1)/2) - 2^((p-1)/2).
Subsequence of A038876.

Programs

  • Mathematica
    Select[ Range[2000], PrimeQ[ # ]&&Mod[ PowerMod[3,(#+1)/2,# ] - PowerMod[2,(#+1)/2,# ] - 1, # ]==0&]
    Select[Prime[Range[250]],Divisible[3^((#+1)/2)-2^((#+1)/2)-1,#]&] (* Harvey P. Dale, Mar 21 2021 *)
  • PARI
    is(n)=(n+1)%24<3 && isprime(n) \\ Charles R Greathouse IV, Apr 06 2012
Showing 1-6 of 6 results.