A235161
Primes which have one or more occurrences of exactly nine different digits.
Original entry on oeis.org
102345689, 102345697, 102345869, 102346789, 102346879, 102346897, 102346957, 102347689, 102348679, 102348769, 102349867, 102354689, 102354697, 102356489, 102356789, 102356987, 102358769, 102358967, 102364859, 102364879, 102365897, 102365947, 102368459
Offset: 1
-
s=[]; forprime(n=100000000, 102400000, if(#vecsort(eval(Vec(Str(n))),,8)==9, s=concat(s, n))); s
A133191
Smallest prime containing all digits except n.
Original entry on oeis.org
1123465789, 203457869, 103456789, 1012458679, 102356789, 102346789, 1012345987, 102345689, 102345697, 1012356487
Offset: 0
We have a(5) = 102346789 because this is the first almost-pandigital prime followed by 102346879, 102346897, 102347689, 102348679, 102348769, 102349867, 102364879, ... all devoid of digit 5.
A255596
Distinct-digit primes that are the concatenation of m and prime(m) for some number m.
Original entry on oeis.org
23, 47, 613, 1237, 1759, 27103, 35149, 45197, 57269, 58271, 61283, 85439, 93487, 145829, 147853, 2371489, 3152087, 3902687, 4062791, 5614073, 5914327, 7405639, 8356421
Offset: 1
The last term is a(23) = 8356421 (prime) because all 7 digits are different and m=835 with 6421=prime(m).
A256339
Distinct-digit primes that are concatenation of prime(m) and m for some m.
Original entry on oeis.org
53, 239, 6719, 7321, 4073561, 6257813, 6521843, 85271063
Offset: 1
Subsequence of
A029743 (distinct-digit primes).
A227795
For each base, b, beginning with binary, the number of (b-1)-digit primes with one copy of each digit save one.
Original entry on oeis.org
0, 3, 1, 9, 52, 283, 2113, 16142, 145227, 1359133, 15000161, 172888810, 2217146126
Offset: 2
In base 3, 10, 12 and 21 are primes: Decimal 3, 5 and 7. In base 4, of the possibilities only 103 is prime: Decimal 19.
-
\\ Starts at base 4 and prints in form 'base:count', bases 2 and 3 done by hand.
{
b=4;while(1,
c=0;for(i=1,b!,perm=numtoperm(b,i);
if(perm[b-1]!=1,
if(gcd(b,perm[1]-1)==1,
if(gcd(b-1,perm[b]-1)==1,
n=sum(j=1,b-1,(perm[j]-1)*b^(j-1));
if(ispseudoprime(n),c++)))));
print1(b":"c"\n");b++)
}
Showing 1-5 of 5 results.
Comments