A073743 Decimal expansion of cosh(1).
1, 5, 4, 3, 0, 8, 0, 6, 3, 4, 8, 1, 5, 2, 4, 3, 7, 7, 8, 4, 7, 7, 9, 0, 5, 6, 2, 0, 7, 5, 7, 0, 6, 1, 6, 8, 2, 6, 0, 1, 5, 2, 9, 1, 1, 2, 3, 6, 5, 8, 6, 3, 7, 0, 4, 7, 3, 7, 4, 0, 2, 2, 1, 4, 7, 1, 0, 7, 6, 9, 0, 6, 3, 0, 4, 9, 2, 2, 3, 6, 9, 8, 9, 6, 4, 2, 6, 4, 7, 2, 6, 4, 3, 5, 5, 4, 3, 0, 3, 5, 5, 8, 7, 0, 4
Offset: 1
Examples
1.54308063481524377847790562075...
References
- S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, p. 218.
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 2, equation 2:5:6 at page 20.
Links
- Ivan Panchenko, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Hyperbolic Cosine.
- Eric Weisstein's World of Mathematics, Hyperbolic Functions.
- Eric Weisstein's World of Mathematics, Factorial Sums.
- Index entries for transcendental numbers.
Crossrefs
Programs
-
Maple
Digits:=100: evalf(cosh(1)); # Wesley Ivan Hurt, Nov 18 2014
-
Mathematica
RealDigits[Cosh[1],10,120][[1]] (* Harvey P. Dale, Aug 03 2014 *)
-
PARI
cosh(1)
Formula
Continued fraction representation: cosh(1) = 1 + 1/(2 - 2/(13 - 12/(31 - ... - (2*n - 4)*(2*n - 5)/((4*n^2 - 10*n + 7) - ... )))). See A051396 for proof. Cf. A049470 (cos(1)) and A073742 (sinh(1)). - Peter Bala, Sep 05 2016
Equals Product_{k>=0} 1 + 4/((2*k+1)*Pi)^2. - Amiram Eldar, Jul 16 2020
Comments