A073762 a(n) = 24*n - 12.
12, 36, 60, 84, 108, 132, 156, 180, 204, 228, 252, 276, 300, 324, 348, 372, 396, 420, 444, 468, 492, 516, 540, 564, 588, 612, 636, 660, 684, 708, 732, 756, 780, 804, 828, 852, 876, 900, 924, 948, 972, 996, 1020, 1044, 1068, 1092, 1116, 1140, 1164, 1188, 1212
Offset: 1
Examples
URSet[12] = {8,9,10} so 12 is here.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..3000
- Tanya Khovanova, Recursive Sequences.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Magma
[24*n-12: n in [1..60]]; // Vincenzo Librandi, Jun 15 2011
-
Mathematica
tn[x_] := Table[w, {w, 1, x}]; di[x_] := Divisors[x]; dr[x_] := Union[di[x], rrs[x]]; rrs[x_] := Flatten[Position[GCD[tn[x], x], 1]]; unr[x_] := Complement[tn[x], dr[x]]; Do[s=Min[unr[n]]; If[Equal[s, 8], Print[n]], {n, 1, 1000}] Range[12, 2000, 24] (* Vladimir Joseph Stephan Orlovsky, Jun 14 2011 *)
-
PARI
a(n)=24*n-12 \\ Charles R Greathouse IV, Jun 14 2011
-
PARI
x='x+O('x^100); Vec(12*(1+x)/(1-x)^2) \\ Altug Alkan, Oct 22 2015
Formula
Min{URS[m]} = 8, where UNR[m] = Complement[RRS[m], Divisors[m]].
a(n) = 24*n - 12. - Max Alekseyev, Mar 03 2007
a(n) = 12*A005408(n-1). - Danny Rorabaugh, Oct 22 2015
G.f.: 12*x*(1 + x)/(1 - x)^2. - Ilya Gutkovskiy, Apr 28 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/48. - Amiram Eldar, Feb 28 2023
From Elmo R. Oliveira, Apr 04 2025: (Start)
E.g.f.: 12*(exp(x)*(2*x - 1) + 1).
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)
Comments