cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073762 a(n) = 24*n - 12.

Original entry on oeis.org

12, 36, 60, 84, 108, 132, 156, 180, 204, 228, 252, 276, 300, 324, 348, 372, 396, 420, 444, 468, 492, 516, 540, 564, 588, 612, 636, 660, 684, 708, 732, 756, 780, 804, 828, 852, 876, 900, 924, 948, 972, 996, 1020, 1044, 1068, 1092, 1116, 1140, 1164, 1188, 1212
Offset: 1

Views

Author

Labos Elemer, Aug 08 2002

Keywords

Comments

Previous name: "Smallest unrelated number belonging to a term of this sequence equals 8."
This is also the list of numbers k such that A259748(k)/k = 5/12. - José María Grau Ribas, Jul 12 2015.
Also the total number of line segments creating a stellated octahedron, where the length of each stellated edge equals n-1, and where the octahedron has 12 edges, each fixed at unit length. - Peter M. Chema, Apr 28 2016

Examples

			URSet[12] = {8,9,10} so 12 is here.
		

Crossrefs

Programs

  • Magma
    [24*n-12: n in [1..60]]; // Vincenzo Librandi, Jun 15 2011
  • Mathematica
    tn[x_] := Table[w, {w, 1, x}]; di[x_] := Divisors[x]; dr[x_] := Union[di[x], rrs[x]]; rrs[x_] := Flatten[Position[GCD[tn[x], x], 1]]; unr[x_] := Complement[tn[x], dr[x]]; Do[s=Min[unr[n]]; If[Equal[s, 8], Print[n]], {n, 1, 1000}]
    Range[12, 2000, 24] (* Vladimir Joseph Stephan Orlovsky, Jun 14 2011 *)
  • PARI
    a(n)=24*n-12 \\ Charles R Greathouse IV, Jun 14 2011
    
  • PARI
    x='x+O('x^100); Vec(12*(1+x)/(1-x)^2) \\ Altug Alkan, Oct 22 2015
    

Formula

Min{URS[m]} = 8, where UNR[m] = Complement[RRS[m], Divisors[m]].
a(n) = 24*n - 12. - Max Alekseyev, Mar 03 2007
a(n) = 12*A005408(n-1). - Danny Rorabaugh, Oct 22 2015
G.f.: 12*x*(1 + x)/(1 - x)^2. - Ilya Gutkovskiy, Apr 28 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/48. - Amiram Eldar, Feb 28 2023
From Elmo R. Oliveira, Apr 04 2025: (Start)
E.g.f.: 12*(exp(x)*(2*x - 1) + 1).
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)