A073846 a(1) = 1; thereafter, every even-indexed term is prime and every odd-indexed term is composite.
1, 2, 4, 3, 6, 5, 8, 7, 9, 11, 10, 13, 12, 17, 14, 19, 15, 23, 16, 29, 18, 31, 20, 37, 21, 41, 22, 43, 24, 47, 25, 53, 26, 59, 27, 61, 28, 67, 30, 71, 32, 73, 33, 79, 34, 83, 35, 89, 36, 97, 38, 101, 39, 103, 40, 107, 42, 109, 44, 113, 45, 127, 46, 131, 48, 137, 49, 139, 50
Offset: 1
Links
Programs
-
Haskell
import Data.List (transpose) a073846 n = a073846_list !! (n-1) a073846_list = concat $ transpose [a018252_list, a000040_list] -- Reinhard Zumkeller, Jan 29 2014
-
Maple
N:= 100: # to get a(1) to a(2*N). p:= ithprime(N): P,NP:= selectremove(isprime,[$1..p]): seq(op([NP[i],P[i]]),i=1..N); # Robert Israel, Dec 22 2014
-
Mathematica
Composite[n_Integer] := FixedPoint[n + PrimePi[ # ] + 1 &, n]; Join[{1}, Flatten[ Transpose[{Table[Prime[n], {n, 1, 35}], Table[Composite[n], {n, 1, 35}]}]]] f[upto_]:=Module[{prs=Prime[Range[PrimePi[upto]]],comps},comps= Complement[ Range[upto],prs];Riffle[Take[comps,Length[prs]],prs]]; f[150] (* Harvey P. Dale, Dec 03 2011 *)
-
PARI
c(n) = for(k=0, primepi(n), isprime(n++)&&k--); n; \\ A002808 a(n) = if (n==1, 1, if (n%2, c(n\2), prime(n/2))); \\ Michel Marcus, Mar 06 2021
-
Python
from sympy import prime, composite def A073846(n): return 1 if n == 1 else (composite(n//2) if n % 2 else prime(n//2)) # Chai Wah Wu, Mar 09 2021
Formula
a(n) = A018252(ceiling(n/2))*A000035(n) + A000040(ceiling(n/2))*A059841(n), equivalent to Reinhard Zumkeller's formula. - Chayim Lowen, Jul 29 2015
a(2n)/a(2n-1) ~ log(n). - Thomas Ordowski, Sep 10 2015
Extensions
Edited by Robert G. Wilson v and Benoit Cloitre, Aug 16 2002
Comments