A073947
Number of strings over Z_3 of length n with trace 0 and subtrace 0.
Original entry on oeis.org
1, 1, 3, 9, 21, 63, 225, 729, 2187, 6561, 19845, 59535, 177633, 531441, 1594323, 4782969, 14344533, 43033599, 129127041, 387420489, 1162261467, 3486784401, 10460471301, 31381413903, 94143533121, 282429536481, 847288609443, 2541865828329, 7625594296341
Offset: 1
a(3;0,0)=3 since the three ternary strings of trace 0, subtrace 0 and length 3 are { 000, 111, 222 }.
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Max Alekseyev, PARI/GP scripts for miscellaneous math problems
- F. Ruskey, Strings over Z_3 with given trace and subtrace
- F. Ruskey, Strings over GF(3) with given trace and subtrace
- Index entries for linear recurrences with constant coefficients, signature (6,-15,27,-36,27).
-
LinearRecurrence[{6,-15,27,-36,27},{1,1,3,9,21},40] (* Harvey P. Dale, Nov 29 2024 *)
A281270
a(n) is the number of closed BCK (a.k.a. affine) lambda terms of size n.
Original entry on oeis.org
0, 0, 1, 2, 3, 9, 30, 81, 242, 838, 2799, 9365, 33616, 122937, 449698, 1696724, 6558855, 25559806, 101294687, 409363758, 1673735259, 6928460475, 29115833976, 123835124242, 532449210893, 2317382872404, 10199542298725, 45345006540851, 203704505953902, 924427259637953, 4234544300812834
Offset: 0
A(x) = x^2 + 2*x^3 + 3*x^4 + 9*x^5 + 30*x^6 + 81*x^7 + 242*x^8 + ...
- Gheorghe Coserea, Table of n, a(n) for n = 0..201
- O. Bodini, D. Gardy, and A. Jacquot, Asymptotics and random sampling for BCI and BCK lambda terms, Theor. Comput. Sci. 502: 227-238 (2013).
- Katarzyna Grygiel, Pawel M. Idziak and Marek Zaionc, How big is BCI fragment of BCK logic, arXiv preprint arXiv:1112.0643 [cs.LO], 2011. (the authors of the paper incorrectly identified this sequence as A073950)
- Pierre Lescanne, Quantitative aspects of linear and affine closed lambda term, arXiv:1702.03085 [cs.DM], 2017.
-
a[0] = a[1] = 0; a[n_] := a[n] = 1 + a[n - 1] + 2 Sum[ k a[k], {k, 2, n - 3}] + Sum[a[k] a[n - 1 - k], {k, 2, n - 3}]; Table[a@ n, {n, 0, 30}] (* Michael De Vlieger, Apr 02 2017 *)
-
seq(N) = {
my(a = vector(N));
for (n=2, N, my(s1 = sum(k=2, n-3, k*a[k]));
a[n] = 1 + a[n-1] + 2*s1 + sum(k=2, n-3, a[k]*a[n-1-k]));
concat(0,a);
};
seq(30)
\\ test: y = Ser(seq(201)); 0 == 2*x^4*y' + (x-x^2)*y^2 - (1-x)^2*y + x^2
A073948
Number of strings over Z_3 of length n with trace 0 and subtrace 1.
Original entry on oeis.org
0, 0, 0, 6, 30, 90, 252, 756, 2268, 6642, 19602, 58806, 176904, 530712, 1592136, 4780782, 14351094, 43053282, 129146724, 387440172, 1162320516, 3486843450, 10460294154, 31380882462, 94143001680, 282429005040, 847287015120, 2541864234006, 7625599079310
Offset: 1
A073949
Number of strings over Z_3 of length n with trace 0 and subtrace 2.
Original entry on oeis.org
0, 2, 6, 12, 30, 90, 252, 702, 2106, 6480, 19602, 58806, 176904, 532170, 1596510, 4785156, 14351094, 43053282, 129146724, 387400806, 1162202418, 3486725352, 10460294154, 31380882462, 94143001680, 282430067922, 847290203766, 2541867422652, 7625599079310
Offset: 1
A073951
Number of strings over Z_3 of length n with trace 1 and subtrace 1.
Original entry on oeis.org
0, 1, 3, 6, 21, 81, 252, 729, 2187, 6642, 19845, 59049, 176904, 531441, 1594323, 4780782, 14344533, 43046721, 129146724, 387420489, 1162261467, 3486843450, 10460471301, 31381059609, 94143001680, 282429536481, 847288609443, 2541864234006, 7625594296341
Offset: 1
a(2;2,1)=1 since the one ternary string of trace 2, subtrace 1 and length 2 is { 11 }.
A073952
Number of strings over Z_3 of length n with trace 1 and subtrace 2.
Original entry on oeis.org
0, 0, 3, 12, 30, 81, 252, 756, 2187, 6480, 19602, 59049, 176904, 530712, 1594323, 4785156, 14351094, 43046721, 129146724, 387440172, 1162261467, 3486725352, 10460294154, 31381059609, 94143001680, 282429005040, 847288609443, 2541867422652, 7625599079310
Offset: 1
a(3;1,2)=3 since the three ternary strings of trace 1, subtrace 2 and length 3 are { 112, 121, 211 }.
-
LinearRecurrence[{6,-15,27,-36,27},{0,0,3,12,30},30] (* Harvey P. Dale, Oct 22 2019 *)
Showing 1-6 of 6 results.
Comments