cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074061 Positive integers k such that 24*k^2 - 23 is a square.

Original entry on oeis.org

1, 4, 6, 39, 59, 386, 584, 3821, 5781, 37824, 57226, 374419, 566479, 3706366, 5607564, 36689241, 55509161, 363186044, 549484046, 3595171199, 5439331299, 35588525946, 53843828944, 352290088261, 532998958141, 3487312356664
Offset: 0

Views

Author

Michael Somos, Aug 19 2002

Keywords

Comments

Positive values of x (or y) satisfying x^2 - 10xy + y^2 + 23 = 0. - Colin Barker, Feb 09 2014

Programs

  • Magma
    I:=[1,4,6,39]; [n le 4 select I[n] else 10*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Feb 10 2014
  • Mathematica
    CoefficientList[Series[(1 - x) (1 + 5 x + x^2)/(1 - 10 x^2 + x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 10 2014 *)
    LinearRecurrence[{0,10,0,-1},{1,4,6,39},30] (* Harvey P. Dale, Jun 06 2015 *)
  • PARI
    {a(n) = if( n<0, a(-1-n), polcoeff( (1 - x) * (1 + 5*x + x^2) / (1 - 10*x^2 + x^4) + x * O(x^n), n))}
    

Formula

G.f.: (1 - x)*(1 + 5*x + x^2)/(1 - 10*x^2 + x^4).
a(n) = 10*a(n-2) - a(n-4) = a(-1-n).
a(2n-1) = round((1/2)*(1-(1/2)/sqrt(6))*(sqrt(2)+sqrt(3))^(2n)); a(2n)=round(c*(sqrt(2)+sqrt(3))^(2n+1)) with c = 0.191357750597... - Benoit Cloitre, Aug 22 2002