cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074477 Largest prime factor of 3^n - 1.

Original entry on oeis.org

2, 2, 13, 5, 11, 13, 1093, 41, 757, 61, 3851, 73, 797161, 1093, 4561, 193, 34511, 757, 363889, 1181, 368089, 3851, 1001523179, 6481, 391151, 797161, 8209, 16493, 20381027, 4561, 4404047, 21523361, 2413941289, 34511, 2664097031, 530713
Offset: 1

Views

Author

Rick L. Shepherd, Aug 23 2002

Keywords

Examples

			3^7 - 1 = 2186 = 2*1093, so a(7) = 1093.
		

Crossrefs

Cf. A006530 (largest prime factor), A024023 (3^n-1).
Cf. A074476 (largest prime factor of 3^n + 1), A005420 (largest prime factor of 2^n - 1), A074479 (largest prime factor of 5^n - 1).

Programs

  • Magma
    [Maximum(PrimeDivisors(3^n-1)): n in [1..40]]; // Vincenzo Librandi, Aug 23 2013
  • Maple
    A074477 := proc(n)
            A006530( 3^n-1) ;
    end proc: # R. J. Mathar, Jul 18 2015
    # alternative:
    a:= n-> max(seq(i[1], i=ifactors(3^n-1)[2])):
    seq(a(n), n=1..40);  # Alois P. Heinz, Jul 18 2015
  • Mathematica
    Table[FactorInteger[3^n - 1] [[-1, 1]], {n, 40}] (* Vincenzo Librandi, Aug 23 2013 *)
  • PARI
    for(n=1,40, v=factor(3^n-1); print1(v[matsize(v)[1],1],","))
    

Formula

a(n) = A006530(A024023(n)). - Michel Marcus, Jul 18 2015

Extensions

Terms to a(100) in b-file from Vincenzo Librandi, Aug 23 2013
a(101)-a(660) in b-file from Amiram Eldar, Feb 01 2020
a(661)-a(690) in b-file from Max Alekseyev, May 22 2022