A040016
Largest prime < e^n.
Original entry on oeis.org
2, 7, 19, 53, 139, 401, 1093, 2971, 8101, 22013, 59863, 162751, 442399, 1202603, 3269011, 8886109, 24154939, 65659969, 178482289, 485165141, 1318815713, 3584912833, 9744803443, 26489122081, 72004899319, 195729609407, 532048240573, 1446257064289, 3931334297131
Offset: 1
a(20) = floor(e^20) - 54 = 485165195 - 54 = 485165141 as there are no primes p such that 485165141 < p < 485165195.
Cf.
A000040,
A000149,
A007512,
A014210,
A050808,
A050809,
A059303,
A064118,
A095935,
A115019,
A074496,
A118840.
A074497
a(n) = the smallest prime > Pi^n.
Original entry on oeis.org
2, 5, 11, 37, 101, 307, 967, 3023, 9491, 29819, 93683, 294211, 924281, 2903689, 9122207, 28658153, 90032231, 282844571, 888582407, 2791563953, 8769956803, 27551631847, 86556004201, 271923706939, 854273519929, 2683779414353, 8431341691901, 26487841119121
Offset: 0
The first prime > Pi^3 = 31.006.... is 37, so a(3) = 37.
-
a[n_] := NextPrime[Pi^n]; a /@ Range[0,10] (* Giovanni Resta, Jan 17 2014 *)
-
with \p1000: for(n=0,30,print1(nextprime(Pi^n)","))
A117879
First semiprime after e^n.
Original entry on oeis.org
4, 4, 9, 21, 55, 155, 407, 1099, 2981, 8105, 22033, 59881, 162757, 442417, 1202611, 3269021, 8886117, 24154953, 65659981, 178482301, 485165203, 1318815739, 3584912849, 9744803447, 26489122131, 72004899341, 195729609431
Offset: 0
Cf.
A000040,
A000149,
A001358,
A007512,
A014210,
A050808,
A050809,
A059303,
A064118,
A095935,
A115019,
A074496,
A118840.
-
fsa[n_]:=Module[{i=1,c=Floor[E^n]},While[PrimeOmega[c+i]!=2,i++];c+i]; Array[fsa,30,0] (* Harvey P. Dale, Oct 18 2013 *)
A117836
Semiprimes of the form floor(e^k).
Original entry on oeis.org
403, 3269017, 485165195, 3584912846, 26489122129, 29048849665247, 639843493530054949, 114200738981568428366295718, 66631762164108958342448140502408732626873, 492345828601205839975486205911330449483779
Offset: 1
a(1) = 403 = floor(e^6) = 13 * 31.
a(2) = 3269017 = floor(e^15) = 773 * 4229.
a(3) = 485165195 = floor(e^20) = 5 * 97033039.
a(4) = 3584912846 = floor(e^22) = 2 * 1792456423.
a(5) = 26489122129 = floor(e^24) = 103 * 257175943.
-
Select[Table[Floor[Exp[k]],{k,100}],PrimeOmega[#]==2&] (* James C. McMahon, Sep 14 2024 *)
A117839
Primes of the form floor(Pi^k + e^k).
Original entry on oeis.org
2, 5, 17, 9255121991, 28870447577
Offset: 1
See also
A059792 (Numbers k such that floor(Pi^k) is prime) and their corresponding primes
A077547.
See also
A059303 (Numbers k such that floor(e^k) + 1 is prime) and their corresponding primes
A118840.
-
Select[Table[Floor[\[Pi]^n+E^n],{n,0,5000}],PrimeQ] (* Harvey P. Dale, Apr 26 2011 *)
A117881
First semiprime after Pi^n.
Original entry on oeis.org
4, 4, 10, 33, 106, 309, 965, 3022, 9489, 29813, 93649, 294209, 924271, 2903678, 9122173, 28658147, 90032221, 282844574, 888582413, 2791563955, 8769956797, 27551631845, 86556004193, 271923706897, 854273519921, 2683779414319
Offset: 0
a(3) = 33 because Pi^3 = 31.0062766... floor(Pi^3) = 31 is prime hence 31 + 2 = 33 is a term.
- Eric Weisstein's World of Mathematics, e-Prime.
Cf.
A000040,
A000149,
A000796,
A001358,
A007512,
A014210,
A050808,
A050809,
A059303,
A064118,
A095935,
A115019,
A074496,
A118840.
-
fsp[n_]:=Module[{k=Ceiling[Pi^n]},While[PrimeOmega[k]!=2,k++];k]; Array[fsp,30,0]
A370305
Numbers k such that the distance from exp(k) to the closest average of two consecutive primes is less than 1.
Original entry on oeis.org
1, 3, 16, 61, 74, 91, 113, 1441, 1566, 2170, 2499
Offset: 1
For k=16, e^16 is about 8886110.52. The next prime is 8886113, and the previous prime is 8886109, and their average 8886111 is at a distance of about 0.48 away from e^16.
-
default(realprecision,2000);for(k=1,+oo,r=exp(k);abs(r-(precprime(r)+nextprime(r))/2)<1&&print1(k,", "))
Showing 1-7 of 7 results.
Comments