cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A074600 a(n) = 2^n + 5^n.

Original entry on oeis.org

2, 7, 29, 133, 641, 3157, 15689, 78253, 390881, 1953637, 9766649, 48830173, 244144721, 1220711317, 6103532009, 30517610893, 152587956161, 762939584197, 3814697527769, 19073486852413, 95367432689201, 476837160300277
Offset: 0

Views

Author

Robert G. Wilson v, Aug 25 2002

Keywords

Comments

Digital root of a(n) is A010697(n). - Peter M. Chema, Oct 24 2016

References

  • Miller, Steven J., ed. Benford's Law: Theory and Applications. Princeton University Press, 2015. See page 14.

Crossrefs

Programs

Formula

a(n) = 5*a(n-1)-3*2^(n-1) = 7*a(n-1)- 10*a(n-2). [Corrected by Zak Seidov, Oct 24 2009]
G.f.: 1/(1-2*x)+1/(1-5*x). E.g.f.: e^(2*x)+e^(5*x). - Mohammad K. Azarian, Jan 02 2009

A092807 Expansion of (1-6*x+4*x^2)/((1-2*x)*(1-6*x)).

Original entry on oeis.org

1, 2, 8, 40, 224, 1312, 7808, 46720, 280064, 1679872, 10078208, 60467200, 362799104, 2176786432, 13060702208, 78364180480, 470185017344, 2821109972992, 16926659575808, 101559956930560, 609359740534784
Offset: 0

Views

Author

Paul Barry, Mar 06 2004

Keywords

Comments

Second binomial transform of A054881 (closed walks at a vertex of an octahedron) With interpolated zeros, counts closed walks of length n at a vertex of the edge-vertex incidence graph of K_4 associated with the edges of K_4.
This also gives the number of noncrossing, nonnesting, 2-colored permutations on {1, 2, ..., n}. - Lily Yen, Apr 22 2013

Crossrefs

Programs

  • Magma
    [1] cat [6^(n-1) + 2^(n-1): n in [1..40]]; // G. C. Greubel, Jan 04 2023
    
  • Mathematica
    CoefficientList[Series[(1-6x+4x^2)/((1-2x)(1-6x)),{x,0,40}],x] (* or *) LinearRecurrence[{8,-12},{1,2,8},41] (* Harvey P. Dale, Aug 23 2011 *)
  • SageMath
    [(6^n + 3*2^n + 2*0^n)/6 for n in range(41)] # G. C. Greubel, Jan 04 2023

Formula

G.f.: (1-6*x+4*x^2)/((1-2*x)*(1-6*x)).
a(n) = (6^n + 3*2^n + 2*0^n)/6.
a(n) = A074601(n-1), n>0. - R. J. Mathar, Sep 08 2008
a(0)=1, a(1)=2, a(2)=8, a(n) = 8*a(n-1)-12*a(n-2). - Harvey P. Dale, Aug 23 2011
a(n) = A124302(n)*2^n. - Philippe Deléham, Nov 01 2011
E.g.f.: (1/6)*( 1 + 3*exp(2*x) + exp(6*x) ). - G. C. Greubel, Jan 04 2023

A045579 Numbers k that divide 6^k + 2^k.

Original entry on oeis.org

1, 2, 4, 8, 10, 16, 32, 50, 64, 128, 136, 164, 250, 256, 512, 1024, 1250, 1544, 2048, 2312, 4096, 5050, 6250, 6724, 8192, 11810, 16384, 25250, 26248, 31250, 32768, 32896, 39304, 59050, 65536, 126250, 131072, 156250, 262144, 275684, 295250, 297992, 376708, 446216
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A074601.

Programs

  • Mathematica
    Select[Range[300000], Divisible[PowerMod[2, #, #] + PowerMod[6, #, #], #] &] (* Amiram Eldar, Oct 23 2021 *)
Showing 1-3 of 3 results.