cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074664 Number of algebraically independent elements of degree n in the algebra of symmetric polynomials in noncommuting variables.

Original entry on oeis.org

1, 1, 2, 6, 22, 92, 426, 2146, 11624, 67146, 411142, 2656052, 18035178, 128318314, 954086192, 7396278762, 59659032142, 499778527628, 4341025729290, 39035256389026, 362878164902216, 3482882959111530, 34472032118214598
Offset: 1

Views

Author

Michael Somos, Aug 29 2002

Keywords

Comments

Also the number of irreducible set partitions of size n (see A055105) {1}; {1,2}; {1,2,3}, {1,23}; ...; and also the number of set partitions of n which do not have a proper subset of parts with a union equal to a subset {1,2,...,j} with j < n (atomic set partitions, see A087903) {1}; {12}; {13,2}, {123}; ...
Also the number of non-nesting permutations on n elements (see He et al.). - Chad Brewbaker, Apr 11 2010
The Chen-Li-Wang link presents a bijection from indecomposable (= atomic) partitions to irreducible partitions. - David Callan, May 13 2014
From David Callan, Jul 21 2017: (Start)
The "non-nesting" permutations in Definition 2.2 of the He et al. reference seem to be the permutations whose inverses avoid all four of the patterns 14-23, 23-14, 32-41, and 41-32 (no nested ascents or descents), counted by 1, 2, 6, 20, 68, 240, 848, 3048, ... .
a(n) is the number of permutations of [n-1] with no nested descents, that is, permutations of [n-1] that avoid both of the dashed patterns 32-41 and 41-32. For example, for p = 823751694, the descents 82 and 75 are nested, as are the descents 75 and 94, but 82 and 94 are not because neither of the intervals [2,8] and [4,9] is contained in the other. Since 82 and 75 are nested, 8275 is a 41-32 pattern in p. (End)

Examples

			G.f. = x + x^2 + 2*x^3 + 6*x^4 + 22*x^5 + 92*x^6 + 426*x^7 + 2146*x^8 + ...
m{1} = x1 + x2 + x3 + ..., so a(1) = 1.
m{1,2} = x1 x2 + x2 x1 + x2 x3 + x3 x2 + x1 x3 + ..., m{12} = x1 x1 + x2 x2 + x3 x3 + ... where m{1} m{1} = m{1,2} + m{12}, so a(2) = 2-1 = 1.
m{1,2,3} = x1 x2 x3 + x1 x2 x4 + x1 x3 x4 + ..., m{12,3} = x1 x1 x2 + x2 x2 x1 + ..., m{13,2} = x1 x2 x1 + x2 x1 x2 + ..., m{1,23} = x1 x2 x2 + x2 x1 x1 + ..., m{123} = x1 x1 x1 + x2 x2 x2 + ... and there are 3 independent relations among these 5 elements m{12} m{1} = m{123} + m{12,3}, m{1} m{12} = m{123} + m{1,23}, m{1} m{1,1} = m{1,2,3} + m{12,3} + m{13,2} so a(3) = 5-3 = 2.
		

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 4, Section 7.2.1.7, Problem 26.

Crossrefs

Row sums of A055105, A055106, A055107. Cf. A098742, A003319.
Row sums of A087903, A055105, A055106, A055107.

Programs

  • Maple
    T := proc(n, k) option remember; local j;
        if k=n then 1
      elif k<0 then 0
      else k*T(n-1,k) + add(T(n-1,j), j=k-1..n-1)
        fi end:
    A074664 := n -> T(n, 0);
    seq(A074664(n), n=0..22); # Peter Luschny, May 13 2014
  • Mathematica
    nmax = 23; A087903[n_, k_] := A087903[n, k] = StirlingS2[n-1, k] + Sum[ (k-d-1)*A087903[n-j-1, k-d]*StirlingS2[j, d], {d, 0, k-1}, {j, 0, n-2}]; a[n_] := Sum[ A087903[n, k], {k, 1, n-1}]; a[1] = 1; Table[a[n], {n, 1, nmax}](* Jean-François Alcover, Oct 04 2011, after Philippe Deléham *)
    Clear[t, n, k, i, nn, x]; coeff = ConstantArray[1, 23]; mp[m_,e_] := If[e==0, IdentityMatrix@ Length@ m, MatrixPower[m, e]]; nn = Length[coeff]; cc = Range[nn]*0 + 1; Monitor[ Do[Clear[t]; t[n_, 1] := t[n, 1] = cc[[n]];
      t[n_, k_] := t[n, k] = If[n >= k,
         Sum[t[n - i, k - 1], {i, 1, 2 - 1}] +
          Sum[t[n - i, k], {i, 1, 2 - 1}], 0];
      A4 = Table[Table[t[n, k], {k, 1, nn}], {n, 1, nn}];
      A5 = A4[[1 ;; nn - 1]]; A5 = Prepend[A5, ConstantArray[0, nn]];
      cc = Total[
        Table[coeff[[n]]*mp[A5, n - 1][[All, 1]], {n, 1,
          nn}]];, {i, 1, nn}], i]; cc
    (* Mats Granvik, Jul 11 2015 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 - 1 / serlaplace( exp( exp( x + x * O(x^n)) - 1)), n))};
    
  • PARI
    x='x+O('x^100); B=exp(exp(x) - 1); Vec( 1-1/serlaplace(B)) \\ Joerg Arndt, Aug 13 2015

Formula

G.f.: 1 - 1 / B(x) where B(x) = g.f. for A000110 the Bell numbers.
a(n) = Sum_{k=1..n-1} A087903(n,k). a(n+1) = Sum_{k=0..n} A086329(n,k). a(n+2) = Sum_{k=0..n} A086211(n,k). - Philippe Deléham, Jun 13 2004
G.f.: x / (1 - (x - x^2) / (1 - x - (x - 2*x^2) / (1 - 2*x - (x - 3*x^2) / ...))) (a continued fraction). - Michael Somos, Sep 22 2005
Hankel transform is A000142. - Philippe Deléham, Jun 21 2007
From Paul Barry, Nov 26 2009: (Start)
G.f.: (of 1,1,2,6,...) 1/(1-x-x^2/(1-3x-2x^2/(1-4x-3x^2/(1-5x-4x^2/(1-6x-5x^2/(1-... (continued fraction);
G.f.: (of 1,2,6,...) 1/(1-2x-2x^2/(1-3x-3x^2/(1-4x-4x^2/(1-5x-5x^2/(1-... (continued fraction). (End)
G.f.: 1/(1-x/(1-x/(1-2x/(1-x/(1-3x/(1-x/(1-4x/(1-x/(1-5x/(1-x/(1-... (continued fraction). - Paul Barry, Mar 03 2010
G.f. satisfies: A(x) = x/(1 - (1-x)*A( x/(1-x) )). - Paul D. Hanna, Aug 15 2010
a(n) = upper left term in M^(n-1), where M is the following infinite square production matrix:
1, 1, 0, 0, 0, 0, ...
1, 2, 1, 0, 0, 0, ...
1, 1, 3, 1, 0, 0, ...
1, 1, 1, 4, 1, 0, ...
1, 1, 1, 1, 5, 1, ...
1, 1, 1, 1, 1, 6, ...
...
a(n) = sum of top row terms in M^(n-2). Example: top row of M^4 = (22, 31, 28, 10, 1, 0, 0, 0, ...), where 22 = a(5) and (22 + 31 + 28 + 10 + 1) = 92 = a(6). - Gary W. Adamson, Jul 11 2011
From Sergei N. Gladkovskii, Sep 28 2012 to May 19 2013: (Start)
Continued fractions:
G.f.: (2+(x^2-4)/(U(0)-x^2+4))/x where U(k) = k*(2*k+3)*x^2 + x - 2 - (2 - x + 2*k*x)*(2 + 3*x + 2*k*x)*(k+1)*x^2/U(k+1).
G.f.: (1+U(0))/x where U(k) = +x*k - 1 + x - x^2*(k+1)/U(k+1).
G.f.: 1 + 1/x - U(0)/x where U(k) = 1 + x - x*(k+1)/(1 - x/U(k+1)).
G.f.: 1/U(0) where U(k) = 1 - x*(k+1)/(1 - x/U(k+1)).
G.f.: 1/x - ((1+x)/x)/G(0) where G(k) = 1 - 2*x*(k+1)/((2*k+1)*(2*x*k-1) - x*(2*k+1)*(2*k+3)*(2*x*k-1)/(x*(2*k+3) - 2*(k+1)*(2*x*k+x-1)/G(k+1))).
G.f.: (1 - G(0))/x where G(k) = 1 - x/(1 - x*(k + 1)/G(k+1)).
G.f.: 1/Q(0) where Q(k) = 1 + x/(x*k - 1)/Q(k+1).
G.f.: Q(0) where Q(k) = 1 + x/(1 - x + x*(k+1)/(x - 1/Q(k+1))). (End)

Extensions

Edited by Mike Zabrocki, Sep 03 2005