cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074738 Decimal expansion of d = 1-(1+log(log(2)))/log(2) = 0.08607133....

Original entry on oeis.org

0, 8, 6, 0, 7, 1, 3, 3, 2, 0, 5, 5, 9, 3, 4, 2, 0, 6, 8, 8, 7, 5, 7, 3, 0, 9, 8, 7, 7, 6, 9, 2, 2, 6, 7, 7, 7, 6, 0, 5, 9, 1, 1, 0, 9, 5, 3, 0, 3, 3, 3, 1, 7, 3, 4, 9, 2, 0, 2, 0, 2, 3, 6, 6, 6, 5, 4, 2, 2, 6, 3, 5, 8, 1, 4, 6, 2, 2, 8, 7, 9, 7, 9, 9, 3, 8, 0, 5, 3, 4, 6, 0, 2, 5, 2, 8, 7, 6, 8, 0, 7, 1, 6, 3
Offset: 0

Views

Author

Benoit Cloitre, Sep 05 2002

Keywords

Comments

An Erdős constant: let s(x) denotes the number of numbers < x expressible as a product of 2 numbers less than or equal to sqrt(x). Erdős showed that S(x) is x/(log x)^(d+o(1)) where d is this constant.
Ford finds that, if H(x,y,z) is the number of integers n <= x which have a divisor in the interval (y,z] and for 3 <= y <= sqrt(x), H(x,y,2y) = x/(((log y)^delta)(log log y)^(3/2)) where delta is the Erdős constant whose decimal digits are A074738. - Jonathan Vos Post, Jul 19 2007
Occurs, citing Ford, in p.2 of Koukoulopoulos. - Jonathan Vos Post, May 18 2010
Luca & Pomerance call this the Erdős-Tenenbaum-Ford constant and show its relationship to the reduced totient function A002174. - Charles R Greathouse IV, Dec 28 2013

Programs

  • Magma
    1-(1+Log(Log(2)))/Log(2); // G. C. Greubel, Apr 16 2018
  • Maple
    evalf(1-(1+log(log(2)))/log(2), 119);  # Alois P. Heinz, Aug 30 2023
  • Mathematica
    Join[{0}, RealDigits[1 - (1 + Log[Log[2]])/Log[2], 10, 100][[1]]] (* G. C. Greubel, Apr 16 2018 *)
  • PARI
    1-(1+log(log(2)))/log(2) \\ Michel Marcus, Mar 14 2013