cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074742 a(n) = (n^3 + 6n^2 - n + 12)/6.

Original entry on oeis.org

2, 3, 7, 15, 28, 47, 73, 107, 150, 203, 267, 343, 432, 535, 653, 787, 938, 1107, 1295, 1503, 1732, 1983, 2257, 2555, 2878, 3227, 3603, 4007, 4440, 4903, 5397, 5923, 6482, 7075, 7703, 8367, 9068, 9807, 10585, 11403, 12262, 13163, 14107, 15095, 16128, 17207, 18333
Offset: 0

Views

Author

Susanna Cuyler, Sep 06 2002

Keywords

References

  • A. Schultze, Advanced Algebra, Macmillan, London, 1910; p. 552.

Crossrefs

Cf. A027965.

Programs

  • Magma
    [(n^3 + 6*n^2 - n + 12)/6: n in [0..50]]; // Vincenzo Librandi, Jan 13 2012
  • Mathematica
    Table[(n^3 + 6n^2 - n + 12)/6, {n, 0, 49}] (* Alonso del Arte, Jan 13 2012 *)
    CoefficientList[Series[(2-5x+7x^2-3x^3)/(1-x)^4,{x,0,50}],x] (* or *) LinearRecurrence[ {4,-6,4,-1},{2,3,7,15},50] (* Harvey P. Dale, Aug 05 2022 *)
  • PARI
    a(n)=n*(n^2+6*n-1)/6+2 \\ Charles R Greathouse IV, Jan 13 2012
    

Formula

From R. J. Mathar, Sep 23 2008: (Start)
G.f.: (2 - 5*x + 7*x^2 - 3*x^3)/(1-x)^4.
a(n) = A027965(n+1), n > 0. (End)
E.g.f.: exp(x)*(12 + 6*x + 9*x^2 + x^3)/6. - Stefano Spezia, Jul 12 2023