cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074816 a(n) = 3^A001221(n) = 3^omega(n).

Original entry on oeis.org

1, 3, 3, 3, 3, 9, 3, 3, 3, 9, 3, 9, 3, 9, 9, 3, 3, 9, 3, 9, 9, 9, 3, 9, 3, 9, 3, 9, 3, 27, 3, 3, 9, 9, 9, 9, 3, 9, 9, 9, 3, 27, 3, 9, 9, 9, 3, 9, 3, 9, 9, 9, 3, 9, 9, 9, 9, 9, 3, 27, 3, 9, 9, 3, 9, 27, 3, 9, 9, 27, 3, 9, 3, 9, 9, 9, 9, 27, 3, 9, 3, 9, 3, 27, 9, 9, 9, 9, 3, 27, 9, 9, 9, 9, 9, 9, 3, 9, 9, 9
Offset: 1

Views

Author

Benoit Cloitre, Sep 08 2002

Keywords

Comments

Old name was: a(n) = sum(d|n, tau(d)*mu(d)^2 ).
Terms are powers of 3.
The inverse Mobius transform of A074823, as the Dirichlet g.f. is product_{primes p} (1+2*p^(-s)) and the Dirichlet g.f. of A074816 is product_{primes p} (1+2*p^(-s))/(1-p^(-s)). - R. J. Mathar, Feb 09 2011
If n is squarefree, then a(n) = #{(x, y) : x, y positive integers, lcm (x, y) = n}. See Crandall & Pomerance. - Michel Marcus, Mar 23 2016

References

  • Richard Crandall and Carl Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see Exercise 2.3 p. 108.

Crossrefs

Programs

Formula

a(n) = 3^m if n is divisible by m distinct primes. i.e., a(n)=3 if n is in A000961; a(n)=9 if n is in A007774 ...
a(n) = 3^A001221(n) = 3^omega(n). Multiplicative with a(p^e)=3. - Vladeta Jovovic, Sep 09 2002.
a(n) = tau_3(rad(n)) = A007425(A007947(n)). - Enrique Pérez Herrero, Jun 24 2010
a(n) = abs(Sum_{d|n} A000005(d^3)*mu(d)). - Enrique Pérez Herrero, Jun 28 2010
a(n) = Sum_{d|n, gcd(d, n/d) = 1} 2^omega(d) (The total number of unitary divisors of the unitary divisors of n). - Amiram Eldar, May 29 2020, Dec 27 2024
a(n) = Sum_{d1|n, d2|n} mu(d1*d2)^2. - Wesley Ivan Hurt, Feb 04 2022
Dirichlet g.f.: zeta(s)^3 * Product_{primes p} (1 - 3/p^(2*s) + 2/p^(3*s)). - Vaclav Kotesovec, Feb 16 2022

Extensions

Simpler definition at the suggestion of Michel Marcus. - N. J. A. Sloane, Mar 25 2016