cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A087326 Erroneous version of A075031.

Original entry on oeis.org

1, 4, 20, 20, 714, 714, 25550, 90180, 142803, 809300
Offset: 1

Views

Author

Keywords

A045983 Numbers k such that n or more consecutive integers starting at k have the same number of distinct prime divisors.

Original entry on oeis.org

1, 2, 2, 2, 54, 91, 141, 141, 44360, 48919, 218972, 526095, 526095, 526095, 17233173, 127890362, 29138958036, 118968284928, 118968284928, 585927201062, 585927201062, 585927201062, 585927201062, 313978488186061, 453918847597184, 453918847597184, 455626105596320
Offset: 1

Views

Author

Keywords

Comments

a(n) = smallest number k such that the n numbers from k through n+k-1 have the same number of prime divisors.
a(24) > 10^12. - Donovan Johnson, Mar 29 2013
a(28) > 2 * 10^15. - Toshitaka Suzuki, Jun 22 2025

Examples

			a(5) = 54 as 54, 55, 56, 57, 58 all have 2 prime divisors.
		

Crossrefs

Programs

  • PARI
    v=vector(16); n=0; c1=0; for(k=1, 127890377, c2=omega(k); if(c1==c2, n++; if(v[n]==0, v[n]=k-n+1; print(n " " v[n])), n=1; c1=c2)) /* Donovan Johnson, Mar 29 2013 */

Extensions

a(18)-a(23) from Donovan Johnson, Mar 29 2013
a(24)-a(27) from Toshitaka Suzuki, Jun 22 2025

A075028 a(1) = 1, then a(n) = the smallest number k such that the number of divisors of the n numbers from k through k+n-1 are in strictly ascending order.

Original entry on oeis.org

1, 1, 61, 61, 11371, 11371, 7392171, 168776043, 1584614377, 38045133481, 30386250649371, 1848289766450821
Offset: 1

Views

Author

Amarnath Murthy, Sep 02 2002

Keywords

Comments

tau(k) < tau(k+1) < ... < tau(k+n-1).
a(11) > 10^12. - Donovan Johnson, Oct 13 2009
a(11) > 10^13. - Giovanni Resta, Jul 25 2013
a(13) > 2.64*10^15. - Jud McCranie, Mar 27 2019

Examples

			a(3) = 61 = a(4) as tau(61) = 2 < tau(62) = 4 < tau(63) = 6 < tau(64) = 7.
		

Crossrefs

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 19 2003
a(7)-a(10) from Donovan Johnson, Oct 13 2009
a(11)-a(12) from Jud McCranie, Mar 27 2019

A075029 a(n) is the smallest number k such that the number of divisors of the n numbers from k through k+n-1 are decreasing.

Original entry on oeis.org

1, 4, 45, 80, 28974, 28974, 8489103, 80314575, 5196065775, 77506573550, 166622964149389, 489289301397948
Offset: 1

Views

Author

Amarnath Murthy, Sep 02 2002

Keywords

Comments

a(11) > 10^12. - Donovan Johnson, Oct 13 2009
a(11) > 10^13. - Giovanni Resta, Jul 25 2013
a(13) > 2.64*10^15. - Jud McCranie, Mar 27 2019

Examples

			a(4) = 80, as tau(80) = 10 > tau(81) = 5 > tau(82) = 4 > tau(83) = 2, and no smaller sequence of 4 consecutive integers satisfies such a chain of inequalities.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 45, p. 17, Ellipses, Paris 2008.

Crossrefs

Cf. A000005 (numdiv).

Programs

  • PARI
    n=2; for(k=1, 100, while(1, m=n; s=1; while(numdiv(m)=k, print1(n-1, ", "); break); n=n+1))
    
  • PARI
    apply( {A075029(n)=for(k=4^(n-1),oo, my(d=numdiv(k)); d(d=numdiv(k+j)) || [k+=j-1, next(2)]); return(k))}, [1..6]) \\ For illustration - becomes slow for n >= 7. - M. F. Hasler, May 26 2025

Extensions

Edited by Ralf Stephan, Mar 21 2003
Definition corrected by Leroy Quet, Feb 23 2008
2 more terms from Lekraj Beedassy, Jul 13 2008
a(9)-a(10) from Donovan Johnson, Oct 13 2009
a(11)-a(12) from Jud McCranie, Mar 27 2019
Definition changed by Robert Israel, May 26 2025

A075046 a(n) = the smallest number k such that the number of divisors of the n numbers from k through k+n-1 are in nondescending order.

Original entry on oeis.org

1, 1, 1, 1, 241, 241, 12853, 12853, 234613, 376741, 78312721, 125938261, 4019167441, 16586155153, 35237422882, 1296230533473, 42301168491121, 61118966262061
Offset: 1

Views

Author

Amarnath Murthy, Sep 03 2002

Keywords

Comments

tau(k) <= tau(k+1) <= ... <= tau(k+n-1).
a(16) > 10^12. - Donovan Johnson, Oct 13 2009
a(17) > 10^13. - Giovanni Resta, Apr 12 2017
a(19) > 2.64*10^15. - Jud McCranie, Mar 27 2019
If a(n) > 1, then A013632(a(n)) >= n. Might be useful to help speed up brute force search. - Chai Wah Wu, May 04 2017

Examples

			a(5) = 241 = a(6) as tau(241) = 2 < tau(242) = tau(243) = tau(244) = tau(245) = 6 < tau(246).
		

Crossrefs

Programs

  • Mathematica
    k = 1; Do[ While[t = Table[ DivisorSigma[0, i], {i, k, k + n - 1}]; t != Sort[t], k++ ]; Print[k], {n, 1, 11}]

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 19 2003
a(11) from Robert G. Wilson v, Sep 07 2003
a(12)-a(15) from Donovan Johnson, Oct 13 2009
a(16) from Fred Schneider, Mar 29 2017
a(17)-a(18) from Jud McCranie, Mar 27 2019
Showing 1-5 of 5 results.