cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A006958 Number of parallelogram polyominoes with n cells (also called staircase polyominoes, although that term is overused).

Original entry on oeis.org

1, 2, 4, 9, 20, 46, 105, 242, 557, 1285, 2964, 6842, 15793, 36463, 84187, 194388, 448847, 1036426, 2393208, 5526198, 12760671, 29466050, 68041019, 157115917, 362802072, 837759792, 1934502740, 4467033943, 10314998977, 23818760154, 55000815222, 127004500762
Offset: 1

Views

Author

Keywords

Comments

Same as: number of skew Ferrers diagrams. - Joerg Arndt, Mar 18 2014
A coin fountain is an arrangement of coins in numbered rows such that the bottom row (row 0) contains contiguous coins and such that each coin in a higher row touches exactly two coins in the next lower row. See A005169. a(n) equals the number of coin fountains with exactly n coins in the even-numbered rows of the fountain. See the illustration in the Links section. See A161492 for a refinement of this sequence. - Peter Bala, Jul 20 2019

Examples

			G.f. may be expressed by the continued fraction: 1/(1-x/(1-x/(1-x^2/(1-x^2/(1-x^3/(1-x^3/(1-x^4/(1-...)))))))) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 20*x^5 + 46*x^6 + 105*x^7 + ...
From _Michael B. Porter_, Sep 21 2016; corrected by _Riccardo Moschetti_, Aug 11 2017: (Start)
Here are the nine parallelogram polyominoes with 4 cells, i.e., polygons convex according to the -45-degree direction, according to "Polya Festoons" of P. Flajolet:
                          _      _  _
             _  _     _ /_ /   /_ /_ /
         _ /_ /_ /  /_ /_ /   /_ /      _  _  _  _
       /_ /_ /     /_ /      /_ /     /_ /_ /_ /_ /
                     _
              _    /_ /    _  _  _            _  _
            /_ /  /_ /   /_ /_ /_ /    _    /_ /_ /
         _ /_ /  /_ /   /_ /    _  _ /_ /  /_ /_ /
       /_ /_ /  /_ /          /_ /_ /_ /
(End)
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.19, p. 380.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    N:= 100: # to get a(1) to a(N)
    M:= ceil(sqrt(N+1)):
    C:= 1:
    for j from M to 1 by -1 do C:= 1/(1-x^j/(1-x^j*C)) od:
    S:= series(C,x,N+1):
    seq(coeff(S,x,j),j=1..N); # Robert Israel, Sep 20 2016
  • Mathematica
    NN = 100; (* to get a(1) to a(NN) *) M = Ceiling[Sqrt[NN+1]]; c = 1; For[j = M, j >= 1, j--, c = 1/(1-x^j/(1-x^j*c))]; c = Series[c, {x, 0, NN+1}]; CoefficientList[c, x][[2 ;; NN+1]] (* Jean-François Alcover, Sep 27 2016, adapted from Robert Israel's Maple code *)
    nmax = 40; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[x^(Range[nmax + 1] - Floor[Range[nmax + 1]/2])]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 05 2017 *)
  • PARI
    {a(n)=local(CF=1+x*O(x^n),m); for(k=0,n\2,m=n\2-k+1;CF=(1-x^((m+1)\2)/CF));polcoeff(1/CF,n)} \\ Paul D. Hanna, May 14 2005
    
  • PARI
    /* From the Delest/Fedou reference: */
    N=44;  q='q+O('q^N);  t=1;
    qn(n) = prod(k=1, n, 1-q^k );
    nm = sum(n=0, N, (-1)^n* q^(n*(n+1)/2) / ( qn(n) * qn(n+1) ) * (t*q)^(n+1) );
    dn = sum(n=0, N, (-1)^n* q^(n*(n-1)/2) / ( qn(n)^2 ) * (t*q)^n );
    Vec(nm/dn)  \\ Joerg Arndt, Mar 18 2014

Formula

G.f.: 1+A(x) = 1/(1-x/(1-x/(1-x^2/(1-x^2/(1-x^3/(1-x^3/(1-...))))))) (continued fraction). - Paul D. Hanna, May 14 2005
The continued fraction given by P. Flajolet, "Polya Festoons", is derived from a q-expansion, C(x, y;q), where C(1, 1;q) = q/(1-2*q-q^3/(1-2*q^2-q^5/(1-2*q^3-q^7/(1-2*q^4-q^9/(1-...))))) = q + 2*q^2 + 4*q^3 + 9*q^4 + 20*q^5 + 46*q^6 + 105*q^7 + ... - Paul D. Hanna, May 14 2005
G.f.: 1/x/G(0) -1/x, where G(k)= 1 - x^(k+1)/(1 - x^(k+1)/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jun 29 2013
G.f.: W(0)/x - 1/x, where W(k) = 1 - x^(k+1)/( x^(k+1) - 1/(1 - x^(k+1)/( x^(k+1) - 1/W(k+1) ))); R=1 (continued fraction). - Sergei N. Gladkovskii, Aug 27 2013
a(n) ~ c * d^n, where d = A276994 = 2.309138593330494731098720305017212531911814472581628401694402900284456440748..., c = 0.29745350581112195107675842441785013227507248969090226252518932405713367... . - Vaclav Kotesovec, Sep 21 2016
From Peter Bala, Jul 21 2019: (Start)
O.g.f. as a ratio of q-series: 1 + A(q) = N(q)/D(q) = 1 + q + 2*q^2 + 4*q^3 + ..., where N(q) = Sum_{n >= 0} (-1)^n*q^((n^2 + 3*n)/2)/Product_{k = 1..n} (1 - q^k)^2 and D(q) = Sum_{n >= 0} (-1)^n*q^((n^2 + n)/2)/Product_{k = 1..n} (1 - q^k)^2.
The constant d = 2.30913... in the above asymptotic formula is a zero of D(q) (as is 1/d).
Continued fraction representations for the o.g.f.:
1 + A(q) = 1/(1 - q/(1 - q/(1 + q*(1 - q) - q/(1 + q*(1 - q^2) - q/(1 + q*(1 - q^3) - (...) ))))).
1 + A(q) = 1/(1 - q - q^2/(1 - q*(1 + q) - q^4/(1 - q^2*(1 + q) - q^6/(1 - q^3(1 + q) - q^8/( (...) ))))).
1 + A(q) = 1/(1 - q - q^2/(1 - q^2 - q/(1 - q^3 - q^5/(1 - q^4 - q^2/(1 - q^5 - q^8/(1 - q^6 - q^3/(1 - q^7 - q^11/(1 - q^8 - (...) )))))))). (End)

Extensions

More terms from Paul D. Hanna, May 14 2005
Definition modified by Don Knuth, Sep 20 2016

A075126 Number of bargraphs of site-perimeter n.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 2, 4, 8, 14, 26, 52, 97, 193, 377, 752, 1500, 3022, 6107, 12429, 25365, 52042, 107090, 221235, 458316, 952439, 1984262, 4144601, 8676232, 18202536, 38263456, 80585694, 170013976, 359277183, 760400787, 1611721413, 3420839200, 7270098883
Offset: 1

Views

Author

Andrew Rechnitzer (a.rechnitzer(AT)ms.unimelb.edu.au), Sep 09 2002

Keywords

Crossrefs

Cf. A075125.
Row sums of A274207.

Programs

  • Maple
    b:= proc(n, y, t, w) option remember; `if`(n<0, 0, `if`(n=0, (1-t),
         `if`(t<0, 0, b(n-`if`(w>0 or t=0, 1, 2), y+1, 1, max(0, w-1)))+
         `if`(t>0 or y<2, 0, b(n, y-1, -1, `if`(t=0, 1, w+1)))+
         `if`(y<1, 0, b(n-`if`(t<0, 1, 2), y, 0, `if`(t<0, w, 0)))))
        end:
    a:= n-> b(n, 0, 1, 0):
    seq(a(n), n=1..45);  # Alois P. Heinz, Jun 05 2016
  • Mathematica
    b[n_, y_, t_, w_] := b[n, y, t, w] = If[n<0, 0, If[n==0, 1-t, If[t<0, 0, b[n - If[w>0 || t==0, 1, 2], y+1, 1, Max[0, w-1]]] + If[t>0 || y<2, 0, b[n, y-1, -1, If[t==0, 1, w+1]]] + If[y<1, 0, b[n - If[t<0, 1, 2], y, 0, If[t<0, w, 0]]]]]; a[n_] := b[n, 0, 1, 0]; Table[a[n], {n, 1, 45}] (* Jean-François Alcover, Nov 28 2016 after Alois P. Heinz *)

Formula

The generating function is known in closed form. Closed, but complicated. It is proved to be non-D-finite.

Extensions

Offset corrected by Alois P. Heinz, Jun 04 2016
a(31)-a(38) from Alois P. Heinz, Jun 05 2016

A166299 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n, having no ascents and no descents of length 1, and having k UUDD's starting at level 0.

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 1, 0, 1, 2, 2, 0, 5, 2, 0, 1, 10, 4, 3, 0, 22, 11, 3, 0, 1, 50, 22, 6, 4, 0, 113, 49, 18, 4, 0, 1, 260, 114, 36, 8, 5, 0, 605, 260, 81, 26, 5, 0, 1, 1418, 604, 193, 52, 10, 6, 0, 3350, 1419, 444, 118, 35, 6, 0, 1, 7967, 3350, 1041, 288, 70, 12, 7, 0, 19055, 7966
Offset: 0

Views

Author

Emeric Deutsch, Nov 07 2009

Keywords

Comments

Sum of entries in row n is the secondary structure number A004148(n-1) (n>=2).
Number of entries in row n is 1 + floor(n/2).
T(n,0)=A166300(n).
Sum(k*T(n,k), k>=0)=A075125(n+2).

Examples

			T(7,2)=3 because we have (UUDD)(UUDD)UUUDDD, (UUDD)UUUDDD(UUDD), and UUUDDD(UUDD)(UUDD) (the UUDD's starting at level 0 are shown between parentheses).
Triangle starts:
1;
0;
0,1;
1,0;
1,0,1;
2,2,0;
5,2,0,1;
10,4,3,0;
		

Crossrefs

Programs

  • Maple
    G := 2/(1+z+z^2+sqrt((1+z+z^2)*(1-3*z+z^2))-2*t*z^2): Gser := simplify(series(G, z = 0, 18)): for n from 0 to 16 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 16 do seq(coeff(P[n], t, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form

Formula

G.f.=G(t,z)=1/(1 + z - zg - tz^2), where g=g(z) satisfies g=1 + zg(g - 1 + z).
G.f. of column k is z^{2k}/(1 + z - zg)^{k+1} (k>=0).
G(t,z)=2/[1+z+z^2+sqrt((1+z+z^2)(1-3z+z^2)-2tz^2)].
Showing 1-3 of 3 results.