cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 32 results. Next

A300121 Number of normal generalized Young tableaux, of shape the integer partition with Heinz number n, with all rows and columns weakly increasing and all regions connected skew partitions.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 8, 4, 11, 12, 16, 12, 32, 28, 31, 8, 64, 31, 128, 33, 82, 64, 256, 28, 69, 144, 69, 86, 512, 105, 1024, 16, 208, 320, 209, 82, 2048, 704, 512, 86, 4096, 318, 8192, 216, 262, 1536, 16384, 64, 465, 262, 1232, 528, 32768, 209, 588, 245, 2912, 3328
Offset: 1

Views

Author

Gus Wiseman, Feb 25 2018

Keywords

Comments

The diagram of a connected skew partition is required to be connected as a polyomino but can have empty rows or columns. A generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers. A tableau is normal if its entries span an initial interval of positive integers. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(9) = 11 tableaux:
1 1
1 1
.
2 1   1 1   1 1   1 2
1 1   1 2   2 2   1 2
.
1 1   1 2   1 2   1 3
2 3   1 3   3 3   2 3
.
1 2   1 3
3 4   2 4
		

Crossrefs

Programs

  • Mathematica
    undcon[y_]:=Select[Tuples[Range[0,#]&/@y],Function[v,GreaterEqual@@v&&With[{r=Select[Range[Length[y]],y[[#]]=!=v[[#]]&]},Or[Length[r]<=1,And@@Table[v[[i]]Table[PrimePi[p],{k}]]]];
    Table[Length[cos[Reverse[primeMS[n]]]],{n,50}]

A259478 Partition containment triangle.

Original entry on oeis.org

1, 2, 2, 3, 4, 3, 5, 8, 7, 5, 7, 12, 13, 12, 7, 11, 20, 23, 25, 19, 11, 15, 28, 35, 42, 39, 30, 15, 22, 42, 54, 70, 70, 66, 45, 22, 30, 58, 78, 105, 114, 119, 99, 67, 30, 42, 82, 112, 158, 178, 202, 186, 155, 97, 42, 56, 110, 154, 223, 262, 313, 314, 292, 226, 139, 56, 77, 152, 215, 319, 383, 479, 503, 511, 442, 336, 195, 77
Offset: 1

Views

Author

Wouter Meeussen, Jun 28 2015

Keywords

Comments

T(n,k) counts pairs of partitions (lambda,mu) with Ferrers diagram of mu not extending beyond the diagram of lambda for all partitions lambda of size n and mu of size k <= n.
First column and main diagonal both equal A000041 (partition numbers).
This sequence counts (2,1)/(1) as different from (3,2,1)/(3,1) while their set-theoretic difference lambda - mu (their skew diagram) is the same.

Examples

			T(3,2) = 4, the pairs of partitions are ((3)/(2)), ((2,1)/(2)), ((2,1)/(1,1)), ((1,1,1)/(1,1))
and the diagrams are:
  x x 0 , x x , x 0 , x
          0     x     x
                      0
Triangle begins:
  n=1;  1
  n=2;  2  2
  n=3;  3  4  3
  n=4;  5  8  7  5
  n=5;  7 12 13 12  7
  n=6; 11 20 23 25 19 11
		

References

  • I. G. MacDonald: "Symmetric functions and Hall polynomials", Oxford University Press, 1979. Page 4.

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; expand(`if`(n=0 or i=1,
          `if`(t=0, 1, add(x^j, j=0..n)), b(n, i-1, min(i-1, t))+
           add(b(n-i, min(i, n-i), min(j, n-i))*x^j, j=0..t)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$3)):
    seq(T(n), n=1..15);  # Alois P. Heinz, Jul 05 2015, revised Jan 10 2018
  • Mathematica
    majorsweak[left_List,right_List]:=Block[{le1=Length[left],le2=Length[right]},If[le2>le1||Min[Sign[left-PadRight[right,le1]]]<0,False,True]];
    Table[Sum[ If[! majorsweak[\[Lambda], \[Mu]], 0, 1] , {\[Lambda], IntegerPartitions[n] }, {\[Mu], IntegerPartitions[m]}], {n, 7}, {m, n}]
    (* Second program: *)
    b[n_, m_, i_, j_, t_] := b[n, m, i, j, t] = If[m > n, 0, If[n == 0, 1, If[i < 1, 0, If[t && j > 0, b[n, m, i, j - 1, t], 0] + If[i > j, b[n, m, i - 1, j, False], 0] + If[i > n || j > m, 0, b[n - i, m - j, i, j, True]]]]]; T[n_, m_] :=  b[n, m, n, m, True]; Table[Table[T[n, m], {m, 1, n}], {n, 1, 14}] // Flatten (* Jean-François Alcover, Aug 27 2016, after Alois P. Heinz *)

Formula

Sum_{k=1..n} T(n,k) = A297388(n) - A000041(n). - Alois P. Heinz, Jan 10 2018

A299968 Number of normal generalized Young tableaux of size n with all rows and columns strictly increasing.

Original entry on oeis.org

1, 1, 2, 5, 15, 51, 189, 753, 3248, 14738, 70658, 354178, 1857703, 10121033, 57224955, 334321008, 2017234773, 12530668585, 80083779383, 525284893144, 3533663143981, 24336720018666, 171484380988738, 1234596183001927, 9075879776056533, 68052896425955296
Offset: 0

Views

Author

Gus Wiseman, Feb 26 2018

Keywords

Comments

A generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers. A tableau is normal if its entries span an initial interval of positive integers.

Examples

			The a(4) = 15 tableaux:
1 2 3 4
.
1 2 3   1 2 4   1 3 4   1 2 3   1 2 3
4       3       2       2       3
.
1 2   1 3   1 2
3 4   2 4   2 3
.
1 2   1 3   1 2   1 4   1 3
3     2     2     2     2
4     4     3     3     3
.
1
2
3
4
		

Crossrefs

Programs

  • Mathematica
    unddis[y_]:=DeleteCases[y-#,0]&/@Tuples[Table[If[y[[i]]>Append[y,0][[i+1]],{0,1},{0}],{i,Length[y]}]];
    dos[y_]:=With[{sam=Rest[unddis[y]]},If[Length[sam]===0,If[Total[y]===0,{{}},{}],Join@@Table[Prepend[#,y]&/@dos[sam[[k]]],{k,1,Length[sam]}]]];
    Table[Sum[Length[dos[y]],{y,IntegerPartitions[n]}],{n,1,8}]

Formula

a(n) = Sum_{k=0..n} 2^k * A238121(n,k). - Ludovic Schwob, Sep 23 2023

Extensions

More terms from Ludovic Schwob, Sep 23 2023

A227309 G.f.: 1/G(0) where G(k) = 1 - q^(k+1) / (1 - q^(k+2)/G(k+1) ).

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 10, 19, 34, 63, 115, 213, 391, 723, 1333, 2463, 4547, 8403, 15522, 28686, 53006, 97963, 181042, 334606, 618415, 1142994, 2112545, 3904592, 7216810, 13338856, 24654268, 45568784, 84225393, 155675230, 287737327, 531830605, 982993368, 1816887637, 3358192905
Offset: 0

Views

Author

Joerg Arndt, Jul 06 2013

Keywords

Comments

Sums along falling diagonals of A161492 (skew Ferrers diagrams by area and number of columns). [Joerg Arndt, Mar 23 2014]

Crossrefs

Cf. A049346 (g.f.: 1-1/G(0), G(k)= 1 + q^(k+1) / (1 - q^(k+1)/G(k+1) ) ).
Cf. A227310 (g.f.: 1/G(0), G(k) = 1 + (-q)^(k+1) / (1 - (-q)^(k+1)/G(k+1) ) ).
Cf. A226728 (g.f.: 1/G(0), G(k) = 1 + q^(k+1) / (1 - q^(k+1)/G(k+2) ) ).
Cf. A226729 (g.f.: 1/G(0), G(k) = 1 - q^(k+1) / (1 - q^(k+1)/G(k+2) ) ).
Cf. A006958 (g.f.: 1/G(0), G(k) = 1 - q^(k+1) / (1 - q^(k+1)/G(k+1) ) ).

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[x^(Range[2, nmax] - Floor[Range[2, nmax]/2])]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 05 2017 *)
  • PARI
    N = 66;  q = 'q + O('q^N);
    G(k) = if(k>N, 1, 1 - q^(k+1) / (1 - q^(k+2) / G(k+1) ) );
    Vec( 1 / G(0) )
    
  • PARI
    /* formula from the Delest/Fedou reference with t=q: */
    N=66;  q='q+O('q^N);  t=q;
    qn(n) = prod(k=1, n, 1-q^k );
    nm = sum(n=0, N, (-1)^n* q^(n*(n+1)/2) / ( qn(n) * qn(n+1) ) * (t*q)^(n+1) );
    dn = sum(n=0, N, (-1)^n* q^(n*(n-1)/2) / ( qn(n)^2 ) * (t*q)^n );
    v=Vec(nm/dn)

Formula

G.f.: 1/(1-q /(1-q^2/(1-q^2/(1-q^3/(1-q^3/(1-q^4/(1-q^4/(1-q^5/(1-q^5/(1-...) )) )) )) )) ).
G.f.: 1/x - Q(0)/(2*x), where Q(k)= 1 + 1/(1 - 1/(1 - 1/(2*x^(k+1)) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 09 2013
G.f.: 1/x - U(0)/x, where U(k)= 1 - x^(k+1)/(1 - x^(k+1)/U(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Aug 15 2013
G.f.: -W(0)/x, where W(k)= 1 - x^(k+1) - x^k - x^(2*k+2)/W(k+1); (continued fraction). - Sergei N. Gladkovskii, Aug 15 2013
G.f.: G(0) where G(k) = 1 - q/(q^(k+2) - 1 / G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jan 18 2016
a(n) ~ c * d^n, where d = 1.84832326133106924642685135202616091890310896530577301386219207630312784... and c = 0.244648950328338656997216931963422920467577616734159139510762093105072... - Vaclav Kotesovec, Sep 05 2017

A227310 G.f.: 1/G(0) where G(k) = 1 + (-q)^(k+1) / (1 - (-q)^(k+1)/G(k+1) ).

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 2, 1, 1, 3, 2, 3, 4, 4, 6, 7, 8, 11, 13, 16, 20, 24, 31, 37, 46, 58, 70, 88, 108, 133, 167, 204, 252, 315, 386, 479, 594, 731, 909, 1122, 1386, 1720, 2124, 2628, 3254, 4022, 4980, 6160, 7618, 9432, 11665, 14433, 17860, 22093, 27341, 33824, 41847, 51785, 64065, 79267
Offset: 0

Views

Author

Joerg Arndt, Jul 06 2013

Keywords

Comments

Number of rough sandpiles: 1-dimensional sandpiles (see A186085) with n grains without flat steps (no two successive parts of the corresponding composition equal), see example. - Joerg Arndt, Mar 08 2014
The sequence of such sandpiles by base length starts (n>=0) 1, 1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, 0, ... (A097331, essentially A000108 with interlaced zeros). This is a consequence of the obvious connection to Dyck paths, see example. - Joerg Arndt, Mar 09 2014
a(n>=1) are the Dyck paths with area n between the x-axis and the path which return to the x-axis only once (at their end), whereas A143951 includes paths with intercalated touches of the x-axis. - R. J. Mathar, Aug 22 2018

Examples

			From _Joerg Arndt_, Mar 08 2014: (Start)
The a(21) = 7 rough sandpiles are:
:
:   1:      [ 1 2 1 2 1 2 1 2 1 2 3 2 1 ]  (composition)
:
:           o
:  o o o o ooo
: ooooooooooooo  (rendering of sandpile)
:
:
:   2:      [ 1 2 1 2 1 2 1 2 3 2 1 2 1 ]
:
:         o
:  o o o ooo o
: ooooooooooooo
:
:
:   3:      [ 1 2 1 2 1 2 3 2 1 2 1 2 1 ]
:
:       o
:  o o ooo o o
: ooooooooooooo
:
:
:   4:      [ 1 2 1 2 3 2 1 2 1 2 1 2 1 ]
:
:     o
:  o ooo o o o
: ooooooooooooo
:
:
:   5:      [ 1 2 3 2 1 2 1 2 1 2 1 2 1 ]
:
:   o
:  ooo o o o o
: ooooooooooooo
:
:
:   6:      [ 1 2 3 2 3 4 3 2 1 ]
:
:      o
:   o ooo
:  ooooooo
: ooooooooo
:
:
:   7:      [ 1 2 3 4 3 2 3 2 1 ]
:
:    o
:   ooo o
:  ooooooo
: ooooooooo
(End)
From _Joerg Arndt_, Mar 09 2014: (Start)
The A097331(9) = 14 such sandpiles with base length 9 are:
01:  [ 1 2 1 2 1 2 1 2 1 ]
02:  [ 1 2 1 2 1 2 3 2 1 ]
03:  [ 1 2 1 2 3 2 3 2 1 ]
04:  [ 1 2 1 2 3 2 1 2 1 ]
05:  [ 1 2 1 2 3 4 3 2 1 ]
06:  [ 1 2 3 2 1 2 3 2 1 ]
07:  [ 1 2 3 2 1 2 1 2 1 ]
08:  [ 1 2 3 2 3 2 1 2 1 ]
09:  [ 1 2 3 2 3 2 3 2 1 ]
10:  [ 1 2 3 4 3 2 1 2 1 ]
11:  [ 1 2 3 2 3 4 3 2 1 ]
12:  [ 1 2 3 4 3 2 3 2 1 ]
13:  [ 1 2 3 4 3 4 3 2 1 ]
14:  [ 1 2 3 4 5 4 3 2 1 ]
(End)
		

Crossrefs

Cf. A049346 (g.f.: 1 - 1/G(0), where G(k)= 1 + q^(k+1) / (1 - q^(k+1)/G(k+1) ) ).
Cf. A226728 (g.f.: 1/G(0), where G(k) = 1 + q^(k+1) / (1 - q^(k+1)/G(k+2) ) ).
Cf. A226729 (g.f.: 1/G(0), where G(k) = 1 - q^(k+1) / (1 - q^(k+1)/G(k+2) ) ).
Cf. A006958 (g.f.: 1/G(0), where G(k) = 1 - q^(k+1) / (1 - q^(k+1)/G(k+1) ) ).
Cf. A227309 (g.f.: 1/G(0), where G(k) = 1 - q^(k+1) / (1 - q^(k+2)/G(k+1) ) ).

Programs

  • PARI
    N = 66;  q = 'q + O('q^N);
    G(k) = if(k>N, 1, 1 + (-q)^(k+1) / (1 - (-q)^(k+1) / G(k+1) ) );
    gf = 1 / G(0);
    Vec(gf)
    
  • PARI
    N = 66;  q = 'q + O('q^N);
    F(q,y,k) = if(k>N, 1, 1/(1 - y*q^2 * F(q, q^2*y, k+1) ) );
    Vec( 1 + q * F(q,q,0) ) \\ Joerg Arndt, Mar 09 2014

Formula

a(0) = 1 and a(n) = abs(A049346(n)) for n>=1.
G.f.: 1/ (1-q/(1+q/ (1+q^2/(1-q^2/ (1-q^3/(1+q^3/ (1+q^4/(1-q^4/ (1-q^5/(1+q^5/ (1+-...) )) )) )) )) )).
G.f.: 1 + q * F(q,q) where F(q,y) = 1/(1 - y * q^2 * F(q, q^2*y) ); cf. A005169 and p. 841 of the Odlyzko/Wilf reference; 1/(1 - q * F(q,q)) is the g.f. of A143951. - Joerg Arndt, Mar 09 2014
G.f.: 1 + q/(1 - q^3/(1 - q^5/(1 - q^7/ (...)))) (from formulas above). - Joerg Arndt, Mar 09 2014
G.f.: F(x, x^2) where F(x,y) is the g.f. of A239927. - Joerg Arndt, Mar 29 2014
a(n) ~ c * d^n, where d = 1.23729141259673487395949649334678514763130846902468... and c = 0.0773368373684184197215007198148835507944051447907... - Vaclav Kotesovec, Sep 05 2017
G.f.: A(x) = 2 -1/A143951(x). - R. J. Mathar, Aug 23 2018

A259480 T(n,m) counts connected skew Ferrers diagrams of shape lambda/mu with lambda and mu partitions of n and m respectively (0<=m<=n).

Original entry on oeis.org

0, 1, 0, 2, 0, 0, 3, 0, 0, 0, 5, 1, 0, 0, 0, 7, 2, 0, 0, 0, 0, 11, 5, 2, 0, 0, 0, 0, 15, 8, 4, 0, 0, 0, 0, 0, 22, 14, 10, 3, 0, 0, 0, 0, 0, 30, 21, 18, 7, 1, 0, 0, 0, 0, 0, 42, 32, 32, 17, 6, 0, 0, 0, 0, 0, 0, 56, 45, 50, 31, 15, 2, 0, 0, 0, 0, 0, 0, 77, 65, 80, 58, 36, 11, 2, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Wouter Meeussen, Jul 01 2015

Keywords

Comments

In contrast to A161492, which counts the same items by area and number of columns, this sequence appears to have no known generating function.
The diagonals T(n,n-k) count connected skew diagrams with weight k:
1; 2; 3,1; 5,2,2; 7,5,4,3,1; 11,8,10,7,6,2,2;
Their sums equal A006958.

Examples

			T(7,2) = 4, the pairs of partitions are ((4,3)/(2)), ((3,3,1)/(2)), ((3,2,2)/(1,1)) and ((2,2,2,1)/(1,1));
The diagrams are:
  x x 0 0 , x x 0 , x 0 0 , x 0
  0 0 0     0 0 0   x 0     x 0
            0       0 0     0 0
                            0
Triangle begins:
      k=0  1  2  3  4  5  6  7
  n=0;  0
  n=1;  1  0
  n=2;  2  0  0
  n=3;  3  0  0  0
  n=4;  5  1  0  0  0
  n=5;  7  2  0  0  0  0
  n=6; 11  5  2  0  0  0  0
  n=7; 15  8  4  0  0  0  0  0
		

References

  • I. G. MacDonald: "Symmetric functions and Hall polynomials"; Oxford University Press, 1979. Page 4.

Crossrefs

Programs

  • Mathematica
    (* see A259479 *) factor[\[Lambda],\[Mu]]/;majorsweak[\[Lambda],\[Mu]]:=Block[{a1,a2,a3},a1=Apply[Join,Table[{i,j},{i,Length[\[Lambda]]},{j,\[Lambda][[i]],\[Lambda][[Min[i+1,Length[\[Lambda]]]]],-1}]];
    a2=Map[{First[#],First[#]>Length[\[Mu]]||\[Mu][[First[#]]]<#[[2]]}&,a1];a3=Map[First,DeleteCases[SplitBy[a2,MatchQ[#,{,False}]&],{{,False}}],{2}];
    Flatten[redu[Part[\[Lambda],#], Part[PadRight[\[Mu],Length[\[Lambda]],0],#]/. 0->Sequence[]]&/@Map[Union,a3],1]];
    Table[Sum[Boole[majorsweak[\[Lambda],\[Mu]]&&redu[\[Lambda],\[Mu]]==factor[\[Lambda],\[Mu]]=={\[Lambda],\[Mu]}],{\[Lambda],Partitions[n]},{\[Mu],Partitions[k]}],{n,0,12},{k,0,n}]

A259479 Skew diagrams, both connected or not.

Original entry on oeis.org

1, 1, 0, 2, 0, 0, 3, 1, 0, 0, 5, 3, 0, 0, 0, 7, 5, 2, 0, 0, 0, 11, 9, 6, 1, 0, 0, 0, 15, 13, 12, 6, 0, 0, 0, 0, 22, 20, 22, 14, 3, 0, 0, 0, 0, 30, 28, 36, 27, 13, 2, 0, 0, 0, 0, 42, 40, 56, 48, 31, 11, 1, 0, 0, 0, 0, 56, 54, 82, 77, 59, 33, 9, 0, 0, 0, 0, 0, 77, 75, 120, 121, 106, 72, 30, 6, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Wouter Meeussen, Jun 28 2015

Keywords

Comments

T(n,m) counts pairs of partitions lambda of n and mu of 0<=m<=n respectively, so that the Ferrers diagram of mu does not exceed that of lambda, and that the diagrams of lambda and mu do not contain equal rows or columns.

Examples

			T(6,2) = 6, the pairs of partitions are ((4,2)/(2)), ((3,3)/(2)), ((3,2,1)/(2)), ((3,2,1)/(1,1)), ((2,2,2)/(1,1)) and ((2,2,1,1)/(1,1))
and the diagrams are:
  x x 0 0 , x x 0 , x x 0 , x 0 0 , x 0 , x 0
  0 0       0 0 0   0 0     x 0     x 0   x 0
                    0       0       0 0   0
                                          0
Triangle begins:
      k=0  1  2  3  4  5  6
  n=0;  1
  n=1;  1  0
  n=2;  2  0  0
  n=3;  3  1  0  0
  n=4;  5  3  0  0  0
  n=5;  7  5  2  0  0  0
  n=6; 11  9  6  1  0  0  0
		

References

  • I. G. MacDonald: "Symmetric functions and Hall polynomials", Oxford University Press, 1979. Page 4.

Crossrefs

Programs

  • Mathematica
    majorsweak[left_List, right_List]:=Block[{le1=Length[left], le2=Length[right]}, If[le2>le1||Min[Sign[left-PadRight[right, le1]]]<0, False, True]];
    redu1[\[Lambda],\[Mu]]/;majorsweak[\[Lambda],\[Mu]]:=Delete[#,List/@DeleteCases[Table[i Boole[\[Lambda][[i]]==\[Mu][[i]]],{i,Length[\[Mu]]}],0]]&/@{\[Lambda],\[Mu]};
    redu[\[Lambda],\[Mu]]/;majorsweak[\[Lambda],\[Mu]]:=TransposePartition/@Apply[redu1,TransposePartition/@redu1[\[Lambda],\[Mu]]];
    Table[Sum[Boole[majorsweak[\[Lambda],\[Mu]]&&redu[\[Lambda],\[Mu]]=={\[Lambda],\[Mu]}],{\[Lambda],Partitions[n]},{\[Mu],Partitions[k]}],{n,0,12},{k,0,n}];

A161492 Triangle T(n,m) read by rows: the number of skew Ferrers diagrams with area n and m columns.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 6, 8, 4, 1, 1, 9, 17, 13, 5, 1, 1, 12, 32, 34, 19, 6, 1, 1, 16, 55, 78, 58, 26, 7, 1, 1, 20, 89, 160, 154, 90, 34, 8, 1, 1, 25, 136, 305, 365, 269, 131, 43, 9, 1, 1, 30, 200, 544, 794, 716, 433, 182, 53, 10, 1, 1, 36, 284, 923, 1609, 1741, 1271, 657, 244, 64, 11, 1
Offset: 1

Views

Author

R. J. Mathar, Jun 11 2009

Keywords

Comments

Row sums give A006958, sums along falling diagonals give A227309. [Joerg Arndt, Mar 23 2014]
A coin fountain is an arrangement of coins in numbered rows such that the bottom row (row 0) contains contiguous coins and such that each coin in a higher row touches exactly two coins in the next lower row. See A005169. T(n,m) equals the number of coin fountains with exactly n coins in the even-numbered rows and n - m coins in the odd-numbered rows of the fountain. See the illustration in the Links section. - Peter Bala, Jul 21 2019

Examples

			T(4,2)=4 counts the following 4 diagrams with area equal to 4 and 2 columns:
   .X..XX...X..XX
   XX..XX...X..X.
   X.......XX..X.
From _Joerg Arndt_, Mar 23 2014: (Start)
Triangle begins:
01:  1
02:  1   1
03:  1   2    1
04:  1   4    3    1
05:  1   6    8    4     1
06:  1   9   17   13     5     1
07:  1  12   32   34    19     6     1
08:  1  16   55   78    58    26     7    1
09:  1  20   89  160   154    90    34    8   1
10:  1  25  136  305   365   269   131   43   9   1
11:  1  30  200  544   794   716   433  182  53  10  1
12:  1  36  284  923  1609  1741  1271  657 ...
(End)
		

Crossrefs

Row sums A006958. Cf. A005169, A227309.

Programs

  • Maple
    qpoch := proc(a,q,n)
        mul( 1-a*q^k,k=0..n-1) ;
    end proc:
    A161492 := proc(n,m)
        local N,N2,ns ;
        N := 0 ;
        for ns from 0 to n+2 do
            N := N+ (-1)^ns *q^binomial(ns+1,2) / qpoch(q,q,ns) / qpoch(q,q,ns+1) *q^(ns+1) *t^(ns+1) ;
            N := taylor(N,q=0,n+1) ;
        end do:
        N2 := 0 ;
        for ns from 0 to n+2 do
            N2 := N2+ (-1)^ns*q^binomial(ns,2)/(qpoch(q,q,ns))^2*q^ns*t^ns ;
            N2 := taylor(N2,q=0,n+1) ;
        end do:
        coeftayl(N/N2,q=0,n) ;
        coeftayl(%,t=0,m) ;
    end proc:
    for a from 1 to 20 do
        for c from 1 to a do
            printf("%d ", A161492(a,c)) ;
        od:
    od:
  • Mathematica
    nmax = 13;
    qn[n_] := Product[1 - q^k, {k, 1, n}];
    nm = Sum[(-1)^n q^(n(n+1)/2)/(qn[n] qn[n+1])(t q)^(n+1) + O[q]^nmax, {n, 0, nmax}];
    dn = Sum[(-1)^n q^(n(n-1)/2)/(qn[n]^2)(t q)^n + O[q]^nmax, {n, 0, nmax}];
    Rest[CoefficientList[#, t]]& /@ Rest[CoefficientList[nm/dn, q]] // Flatten (* Jean-François Alcover, Dec 19 2019, after Joerg Arndt *)
  • PARI
    /* formula from the Delest/Fedou reference: */
    N=20;  q='q+O('q^N);  t='t;
    qn(n) = prod(k=1, n, 1-q^k );
    nm = sum(n=0, N, (-1)^n* q^(n*(n+1)/2) / ( qn(n) * qn(n+1) ) * (t*q)^(n+1) );
    dn = sum(n=0, N, (-1)^n* q^(n*(n-1)/2) / ( qn(n)^2 ) * (t*q)^n );
    v=Vec(nm/dn);
    for(n=1,N-1,print(Vec(polrecip(Pol(v[n])))));  \\ print triangle
    \\ Joerg Arndt, Mar 23 2014

Formula

From Peter Bala, Jul 21 2019: (Start)
The following formulas all include an initial term T(0,0) = 1.
O.g.f. as a ratio of q-series: A(q,t) = N(q,t)/D(q,t) = 1 + q*t + q^2*(t + t^2) + q^3*(t + 2*t^2 + t^3) + ..., where N(q,t) = Sum_{n >= 0} (-1)^n*q^((n^2 + 3*n)/2)*t^n/Product_{k = 1..n} (1 - q^k)^2 and D(q,t) = Sum_{n >= 0} (-1)^n*q^((n^2 + n)/2)*t^n/Product_{k = 1..n} (1 - q^k)^2.
Continued fraction representations:
A(q,t) = 1/(1 - q*t/(1 - q/(1 - q^2*t/(1 - q^2/(1 - q^3*t/(1 - q^3/(1 - (...) ))))))).
A(q,t) = 1/(1 - q*t/(1 + q*(t - 1) - q*t/(1 + q*(t - q) - q*t/( 1 + q*(t - q^2) - q*t/( (...) ))))).
A(q,t) = 1/(1 - q*t - q^2*t/(1 - q*(1 + q*t) - q^4*t/(1 - q^2*(1 + q*t) - q^6*t/(1 - q^3*(1 + q*t) - q^8*t/( (...) ))))).
A(q,t) = 1/(1 - q*t - q^2*t/(1 - q^2*t - q/(1 - q^3*t - q^5*t/(1 - q^4*t - q^2/(1 - q^5*t - q^8*t/ (1 - q^6*t - q^3/(1 - q^7*t - q^11*t/(1 - q^8*t - (...) )))))))). (End)

A067675 Number of fixed convex polyominoes with n cells.

Original entry on oeis.org

1, 2, 6, 19, 59, 176, 502, 1374, 3630, 9312, 23320, 57279, 138536, 331032, 783630, 1841867, 4306172, 10028276, 23288394, 53974959, 124925967, 288878550, 667602492, 1542254655, 3562000916, 8225719574, 18994263354, 43858728367, 101270779744, 233836327750, 539935689810
Offset: 1

Views

Author

Steven Finch, Feb 04 2002

Keywords

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.19, p. 380.

Crossrefs

Cf. A006958, A067676 (fixed directed convex polyominoes), A191148 (fixed line-convex polycubes in 3 dimensions), A276994.

Formula

a(n) ~ c * d^n, where d = A276994 = 2.309138593330494731098720305017212531911814472581628401694402900284456440748..., c = 2.91959850971360705538470951565133568591516894147305658630679268977185945... . - Vaclav Kotesovec, Sep 27 2016

Extensions

Six more terms from Ruben Grønning Spaans, Sep 20 2014

A300120 Number of skew partitions whose quotient diagram is connected and whose numerator has weight n.

Original entry on oeis.org

2, 6, 12, 26, 44, 86, 136, 239, 376, 613, 930, 1485, 2194, 3355, 4948, 7372, 10656, 15660, 22359, 32308
Offset: 1

Views

Author

Gus Wiseman, Feb 25 2018

Keywords

Comments

The diagram of a connected skew partition is required to be connected as a polyomino but can have empty rows or columns.

Examples

			The a(3) = 12 skew partitions:
(3)/()   (3)/(1)   (3)/(2)    (3)/(3)
(21)/()  (21)/(11) (21)/(2)   (21)/(21)
(111)/() (111)/(1) (111)/(11) (111)/(111)
		

Crossrefs

Programs

  • Mathematica
    undcon[y_]:=Select[Tuples[Range[0,#]&/@y],Function[v,GreaterEqual@@v&&With[{r=Select[Range[Length[y]],y[[#]]=!=v[[#]]&]},Or[Length[r]<=1,And@@Table[v[[i]]
    				
Showing 1-10 of 32 results. Next