A074598
Numerator of 4 * H(n,4,1), a generalized harmonic number. See A075136.
Original entry on oeis.org
4, 24, 236, 3248, 57556, 416152, 2136452, 63349408, 710302388, 26725332056, 1112171931196, 375714836272, 2662087948804, 142662781936712, 2738366988282628, 168623511779891008, 170109214167178588
Offset: 1
-
Table[ Numerator[ Sum[1/i, {i, 1/4, n}]], {n, 1, 20}]
Original entry on oeis.org
1, 6, 59, 812, 14389, 104038, 534113, 15837352, 177575597, 6681333014
Offset: 1
A075135
Numerator of the generalized harmonic number H(n,3,1) described below.
Original entry on oeis.org
1, 5, 39, 209, 2857, 11883, 233057, 2632787, 13468239, 13739939, 433545709, 7488194853, 281072414761, 284780929571, 12393920563953, 288249495707519, 2038704876507433, 2058454144222533, 2077126179153173, 60750140156034617
Offset: 1
a(3)=39 because 1 + 1/4 + 1/7 = 39/28.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 263, 269, 272, 297, 302, 356.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Oxford Univ. Press, 1971, page 88.
-
a=3; b=1; maxN=20; s=0; Numerator[Table[s+=1/(a n + b), {n, 0, maxN-1}]]
Accumulate[1/Range[1,60,3]]//Numerator (* Harvey P. Dale, Dec 30 2019 *)
A051539
a(n) is the least common multiple of {1, 5, 9, 13, 17, ..., 4n+1} (A016813).
Original entry on oeis.org
1, 5, 45, 585, 9945, 69615, 348075, 10094175, 111035925, 4108329225, 168441498225, 168441498225, 1179090487575, 62491795841475, 1187344120988025, 72427991380269525, 72427991380269525, 1665843801746199075, 121606597527472532475, 121606597527472532475
Offset: 0
a(3) = LCM {1, 5, 9, 13} = 585.
-
k:=77; [Lcm([h: h in [1..j by 4]]): j in [1..k by 4]]; // Bruno Berselli, May 03 2011
-
Table[ Apply[ LCM, Join[{1}, Table[1 + 4i, {i, 0, n}]]], {n, 0, 19}]
nn=20;Table[LCM@@Take[4Range[0,nn-1]+1,n],{n,nn}] (* Harvey P. Dale, Jul 04 2011 *)
Table[LCM@@NestList[#+4&,1,n],{n,0,20}] (* Harvey P. Dale, Nov 21 2016 *)
-
a(n)=lcm(vector(n,i,4*n+1)) \\ Charles R Greathouse IV, Feb 09 2017
A097328
Denominator of 1 + 1/5 + 1/9 +...+ 1/(4n+1).
Original entry on oeis.org
1, 5, 45, 585, 9945, 69615, 348075, 10094175, 111035925, 4108329225, 168441498225, 56147166075, 393030162525, 20830598613825, 395781373662675, 24142663793423175, 24142663793423175, 555281267248733025
Offset: 0
-
Table[Denominator[Total[1/Range[1, 4n+1, 4]]], {n, 0, 20}]
Showing 1-5 of 5 results.
Comments