A075263 Triangle of coefficients of polynomials H(n,x) formed from the first (n+1) terms of the power series expansion of ( -x/log(1-x) )^(n+1), multiplied by n!.
1, 1, -1, 2, -3, 1, 6, -12, 7, -1, 24, -60, 50, -15, 1, 120, -360, 390, -180, 31, -1, 720, -2520, 3360, -2100, 602, -63, 1, 5040, -20160, 31920, -25200, 10206, -1932, 127, -1, 40320, -181440, 332640, -317520, 166824, -46620, 6050, -255, 1, 362880, -1814400, 3780000, -4233600, 2739240, -1020600, 204630, -18660, 511, -1
Offset: 0
Examples
H(0,x) = 1 H(1,x) = (1 - 1*x)/1! H(2,x) = (2 - 3*x + 1*x^2)/2! H(3,x) = (6 - 12*x + 7*x^2 - 1*x^3)/3! H(4,x) = (24 - 60*x + 50*x^2 - 15*x^3 + 1*x^4)/4! H(5,x) = (120 - 360*x + 390*x^2 - 180*x^3 + 31*x^4 - 1*x^5)/5! H(6,x) = (720 - 2520*x + 3360*x^2 - 2100*x^3 + 602*x^4 - 63*x^5 + 1*x^5)/6! Triangle begins: 1; 1, -1; 2, -3, 1; 6, -12, 7, -1; 24, -60, 50, -15, 1; 120, -360, 390, -180, 31, -1; 720, -2520, 3360, -2100, 602, -63, 1; 5040, -20160, 31920, -25200, 10206, -1932, 127, -1;
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Nguyen-Huu-Bong, Some Combinatorial Properties of Summation Operators, J. Comb. Theory, Ser. A 11.3 (1971): 213-221. See Table on page 214.
Programs
-
GAP
Flat(List([0..12], n-> List([0..n], k-> Sum([0..n-k], j-> (-1)^(n-j)*Binomial(n-k,j)*(j+1)^n )))); # G. C. Greubel, Jan 27 2020
-
Magma
T:= func< n,k | &+[(-1)^(n-j)*Binomial(n-k,j)*(j+1)^n: j in [0..n-k]] >; [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 27 2020
-
Maple
CL := f -> PolynomialTools:-CoefficientList(f,x): T_row := n -> `if`(n=0, [1], CL(x^(n+1)*polylog(-n, 1-x))): for n from 0 to 6 do T_row(n) od; # Peter Luschny, Sep 28 2017
-
Mathematica
Table[CoefficientList[x^(n+1)*Sum[k^n*(1-x)^k, {k, 0, Infinity}], x], {n, 0, 10}]//Flatten (* Roger L. Bagula, Sep 11 2008 *) p[x_, n_]:= x^(n+1)*PolyLog[-n, 1-x]; Table[CoefficientList[p[x, n], x], {n, 0, 10}]//Flatten (* Roger L. Bagula and Gary W. Adamson, Sep 15 2008 *)
-
PARI
T(n,k)=if(k<0 || k>n,0,n!*polcoeff((-x/log(1-x+x^2*O(x^n)))^(n+1),k)) for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
-
PARI
T(n,k)=sum(i=0,n-k,(-1)^(n-i)*binomial(n-k,i)*(i+1)^n) for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
-
PARI
/* Using e.g.f. A(x,y): */ {T(n,k)=local(X=x+x*O(x^n),Y=y+y^2*O(y^(k))); n!*polcoeff(polcoeff(-log(1-(1-exp(-X*Y))/y),n,x),k,y)} for(n=0,10,for(k=0,n-1,print1(T(n,k),", "));print(""))
-
PARI
/* Deléham's DELTA: T(n,k) = [x^(n-k)*y^k] P(n,0) */ {P(n,k)=if(n<0||k<0,0,if(n==0,1, P(n,k-1)+(x*(k\2+1)+y*(-(k\2+1)*((k+1)%2)))*P(n-1,k+1)))} {T(n,k)=polcoeff(polcoeff(P(n,0),n-k,x),k,y)} for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
-
Sage
def T(n, k): return sum( (-1)^(n-j)*binomial(n-k, j)*(j+1)^n for j in (0..n-k)) [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 27 2020
Formula
Generated by [1, 1, 2, 2, 3, 3, ...] DELTA [ -1, 0, -2, 0, -3, 0, ...], where DELTA is the operator defined in A084938.
T(n, k) = Sum_{i=0..n-k} (-1)^(n-i)*C(n-k, i)*(i+1)^n; n >= 0, 0 <= k <= n. - Paul D. Hanna, Jul 21 2005
E.g.f.: A(x, y) = -log(1-(1-exp(-x*y))/y). - Paul D. Hanna, Jul 21 2005
p(x,n) = x^(n + 1)*Sum_{k>=0} k^n*(1 - x)^k; t(n,m) = Coefficients(p(x,n)). - Roger L. Bagula, Sep 11 2008
p(x,n) = x^(n + 1)*PolyLog(-n, 1 - x); t(n,m) = coefficients(p(x,n)) for n >= 1. - Roger L. Bagula and Gary W. Adamson, Sep 15 2008
Extensions
Error in one term corrected by Benoit Cloitre, Aug 20 2007
Comments