A075415 Squares of A002280 or numbers (666...6)^2.
0, 36, 4356, 443556, 44435556, 4444355556, 444443555556, 44444435555556, 4444444355555556, 444444443555555556, 44444444435555555556, 4444444444355555555556, 444444444443555555555556, 44444444444435555555555556, 4444444444444355555555555556, 444444444444443555555555555556
Offset: 0
Examples
a(2) = 66^2 = 4356. From _Reinhard Zumkeller_, May 31 2010: (Start) n=1: ..................... 36 = 9 * 4; n=2: ................... 4356 = 99 * 44; n=3: ................. 443556 = 999 * 444; n=4: ............... 44435556 = 9999 * 4444; n=5: ............. 4444355556 = 99999 * 44444; n=6: ........... 444443555556 = 999999 * 444444; n=7: ......... 44444435555556 = 9999999 * 4444444; n=8: ....... 4444444355555556 = 99999999 * 44444444; n=9: ..... 444444443555555556 = 999999999 * 444444444. (End)
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- Gérard Villemin, Variations sur les carrés.
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Crossrefs
Programs
-
Mathematica
Table[FromDigits[PadRight[{},n,6]]^2,{n,0,20}] (* or *) LinearRecurrence[ {111,-1110,1000},{0,36,4356},20] (* Harvey P. Dale, May 20 2021 *)
Formula
a(n) = (6*(10^n-1)/9)^2 = (4/9)*(10^(2*n) - 2*10^n + 1), which is n-1 4's, followed by a 3, n-1 5's and a 6. - Ignacio Larrosa Cañestro, Feb 26 2005
From Reinhard Zumkeller, May 31 2010: (Start)
G.f.: 36*x*(1 + 10*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)). - Arkadiusz Wesolowski, Dec 26 2011
From Elmo R. Oliveira, Jul 27 2025: (Start)
E.g.f.: 4*exp(x)*(1 - 2*exp(9*x) + exp(99*x))/9.
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3).
a(n) = 36*A002477(n). (End)
Extensions
Edited by Alois P. Heinz, Aug 21 2019 (merged with A102794, submitted by Richard C. Schroeppel, Feb 26 2005)
Comments