A100991 Duplicate of A075821.
0, 1, 3, 4, 7, 8, 9, 11, 12, 13, 16, 17, 19, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 36, 37, 39
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Any square ends with one of 0, 1, 4, 5, 6, 9, so a(1) = 6. A square may end with 22 different two-digit combinations: 00, 01, 04, 09, 16, 21, 24, 25, 29, 36, 41, 44, 49, 56, 61, 64, 69, 76, 81, 84, 89, 96. E.g., no number ending with 14 can be square, etc. See also A075821, A075823. The finite sequence A122986 has a(3) = 159 terms. - _Reinhard Zumkeller_, Mar 21 2010
[1] cat [(83 + 27*(-1)^n + 9*2^(1 + n) + (-1)^n*2^(2 + n) + 9*5^(2 + n) + (-1)^n*5^(2 + n) + 2^(1 + n)*5^(2 + n))/ 72: n in [0..20]]; // Vincenzo Librandi, Mar 29 2012
-(-6+38*z+241*z^2-594*z^3-1285*z^4+1600*z^5+1500*z^6)/((-1+z)*(5*z-1)*(2*z+1)*(2*z-1)*(5*z+1)*(10*z-1)*(z+1)); # Bruno Salvy
a[n_] := (83 - 27*(-1)^n + 9*2^(n) - (-1)^n*2^(1 + n) + 9*5^(1 + n) - (-1)^n*5^(1 + n) + 2^(n)*5^(1 + n))/72; Table[ Floor[ a[n]], {n, 0, 20}] (* Or *) a[0] = 1; a[1] = 6; a[2] = 22; a[3] = 159; a[4] = 1044; a[5] = 9121; a[6] = 78132; a[7] = 748719; a[8] = 7161484; a[n_] := 130 a[n - 2] - 3129 a[n - 4] + 13000 a[n - 6] - 10000 a[n - 8]; Table[ a[n], {n, 0, 20}] (* Or *) CoefficientList[ Series[(1 - 4*x - 68*x^2 + 59*x^3 + 723*x^4 - 5*x^5 - 1700*x^6 - 500*x^7)/(1 - 10*x - 30*x^2 + 300*x^3 + 129*x^4 - 1290*x^5 - 100*x^6 + 1000*x^7), {x, 0, 20}], x] (* Robert G. Wilson v, Nov 27 2004 *) LinearRecurrence[{10,30,-300,-129,1290,100,-1000},{1,6,22,159,1044,9121,78132,748719},20] (* Harvey P. Dale, Dec 17 2017 *)
print([(2 + 2**n // 6) * (1 + 5**(n+1) // 12) if n else 1 for n in range(21)]) # Nick Hobson, Mar 10 2024
a(1)=10 because a cube may end with any digit (10 possible combinations); a(2)=63 because a cube may end with 63 2-digit combinations (including leading zeros). A cube may end with 63 different 2-digit combinations: 00, 01, 03, 04, 07, 08, 09, 11, 12, 13, 16, 17, 19, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 36, 37, 39, 41, 43, 44, 47, 48, 49, 51, 52, 53, 56, 57, 59, 61, 63, 64, 67, 68, 69, 71, 72, 73, 75, 76, 77, 79, 81, 83, 84, 87, 88, 89, 91, 92, 93, 96, 97, 99. Numbers ending with 14 say cannot be cubes. See also A075821, A075823. - _Zak Seidov_, Oct 18 2002
a(n)=(5^(n+2)+30)\31*((4<Charles R Greathouse IV, Jan 03 2013
a(11) = 11 since 11^21 = 7400249944258160101211 and the final two digits are 11.
[n^21 mod 100: n in [0..1000]]; // Vincenzo Librandi, Apr 21 2011
Table[Mod[n^21,100],{n,0,100}] (* Vladimir Joseph Stephan Orlovsky, Apr 13 2011 *) PowerMod[Range[0,80],21,100] (* Harvey P. Dale, Mar 15 2015 *)
a(n)=n^21%100 \\ Charles R Greathouse IV, Apr 06 2016
Comments