A075827 Let u(1) = x and u(n+1) = (n^2/u(n)) + 1 for n >= 1; then a(n) is such that u(n) =(a(n)*x + b(n))/(c(n)*x + d(n)) (in lowest terms) and a(n), b(n), c(n), d(n) are positive integers.
1, 1, 5, 14, 47, 222, 319, 2132, 5637, 16270, 20417, 217284, 263111, 3323194, 3920925, 764392, 1768477, 29382138, 33464927, 622740028, 3502177707, 3436155514, 3825136961, 86449058184, 95405331155, 469336577606, 514159128837, 1519292745404, 236266661971, 6755272778730, 7313175618421
Offset: 1
Keywords
Links
- Petros Hadjicostas, Proofs of various results about the sequence u(n), 2020.
Programs
-
PARI
u(n) = if(n<2, x, (n-1)^2/u(n-1)+1); a(n) = polcoeff(numerator(u(n)), 1, x); for(n=1, 30, print1(a(n)", ")) \\ Petros Hadjicostas, May 06 2020
Formula
Extensions
Name edited by Petros Hadjicostas, May 06 2020
More terms from Michel Marcus, Aug 01 2025
Comments