cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075829 Let u(1) = x and u(n+1) = (n^2/u(n)) + 1 for n >= 1; then a(n) is such that u(n) = (b(n)*x + c(n))/(d(n)*x + a(n)) (in lowest terms) and a(n), b(n), c(n), d(n) are positive integers.

Original entry on oeis.org

1, 0, 1, 1, 5, 13, 23, 101, 307, 641, 893, 7303, 9613, 97249, 122989, 19793, 48595, 681971, 818107, 13093585, 77107553, 66022193, 76603673, 1529091919, 1752184789, 7690078169, 8719737569, 23184641107, 3721854001, 96460418429
Offset: 1

Views

Author

Benoit Cloitre, Oct 14 2002

Keywords

Comments

For x real <> 1 - 1/log(2), Lim_{n -> infinity} abs(u(n) - n) = abs((x - 1)/(1 + (x - 1)*log(2))). [Corrected by Petros Hadjicostas, May 18 2020]
Difference between the denominator and the numerator of the (n-1)-th alternating harmonic number Sum_{k=1..n-1} (-1)^(k+1)*1/k = A058313(n-1)/A058312(n-1). - Alexander Adamchuk, Jul 22 2006
From Petros Hadjicostas, May 06 2020: (Start)
Inspired by Michael Somos's result below, we established the following formulas (valid for n >= 2). All the denominators in the first three formulas are equal to A334958(n).
b(n) = A024167(n)/gcd(A024167(n-1), A024167(n)).
c(n) = A024168(n)/gcd(A024168(n-1), A024168(n)).
d(n) = A024167(n-1)/gcd(A024167(n-1), A024167(n)).
b(n) + c(n) = n*(d(n) + a(n)).
u(n) = (A024167(n)*x + A024168(n))/(A024167(n-1)*x + A024168(n-1)). (End)

Crossrefs

Cf. A075827 (= b), A075828 (= c), A075830 (= d).

Programs

  • Mathematica
    Denominator[Table[Sum[(-1)^(k+1)*1/k,{k,1,n-1}],{n,1,30}]]-Numerator[Table[Sum[(-1)^(k+1)*1/k,{k,1,n-1}],{n,1,30}]] (* Alexander Adamchuk, Jul 22 2006 *)
  • PARI
    u(n) = if(n<2, x, (n-1)^2/u(n-1)+1);
    a(n) = polcoeff(denominator(u(n)), 0, x);

Formula

a(n) = A024168(n-1)/gcd(A024168(n-1), A024168(n)). - Michael Somos, Oct 29 2002
From Alexander Adamchuk, Jul 22 2006: (Start)
a(n) = A058312(n-1) - A058313(n-1) for n > 1 with a(1) = 1.
a(n) = denominator(Sum_{k=1..n-1} (-1)^(k+1)*1/k) - numerator(Sum_{k=1..n-1}(-1)^(k+1)*1/k). (End)

Extensions

Name edited by Petros Hadjicostas, May 06 2020