A075870 Numbers k such that 2*k^2 - 4 is a square.
2, 10, 58, 338, 1970, 11482, 66922, 390050, 2273378, 13250218, 77227930, 450117362, 2623476242, 15290740090, 89120964298, 519435045698, 3027489309890, 17645500813642, 102845515571962, 599427592618130, 3493720040136818, 20362892648202778, 118683635849079850
Offset: 1
Examples
From _Muniru A Asiru_, Mar 19 2018: (Start) For k=2, 2*2^2 - 4 = 8 - 4 = 4 = 2^2. For k=10, 2*10^2 - 4 = 200 - 4 = 196 = 14^2. For k=58, 2*58^2 - 4 = 6728 - 4 = 6724 = 82^2. ... (End)
References
- A. H. Beiler, "The Pellian", ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
- Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.
- P.-F. Teilhet, Reply to Query 2094, L'Intermédiaire des Mathématiciens, 10 (1903), 235-238. - N. J. A. Sloane, Mar 03 2022
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Tanya Khovanova, Recursive Sequences
- J. J. O'Connor and E. F. Robertson, Pell's Equation
- Eric Weisstein's World of Mathematics, Pell Equation.
- Index entries for linear recurrences with constant coefficients, signature (6,-1).
Programs
-
GAP
a:=[2,10];; for n in [3..25] do a[n]:=6*a[n-1]-a[n-2]; od; a; # Muniru A Asiru, Mar 19 2018
-
Maple
a:= proc(n) option remember: if n = 1 then 2 elif n = 2 then 10 elif n >= 3 then 6*procname(n-1) - procname(n-2) fi; end: seq(a(n), n = 0..25); # Muniru A Asiru, Mar 19 2018
-
Mathematica
LinearRecurrence[{6,-1},{2,10},30] (* Harvey P. Dale, Sep 27 2018 *)
-
PARI
Vec(2*x*(1-x)/(1-6*x+x^2) + O(x^100)) \\ Colin Barker, Dec 20 2014
Formula
a(n) = 2 * A001653(n).
a(n) = (1/sqrt(2))*((1+sqrt(2))^(2*n-1) - (1-sqrt(2))^(2*n-1)) = 6*a(n-1) - a(n-2).
G.f.: 2*x*(1-x)/(1-6*x+x^2). - Philippe Deléham, Nov 17 2008
a(n) = round(((2+sqrt(2))*(3+2*sqrt(2))^(n-1))/2). - Paul Weisenhorn, Jun 11 2020
From Peter Bala, Aug 21 2022: (Start)
a(n) = 2*Pell(2*n-1).
1/a(n) - 1/a(n+1) = 1/(Pell(2*n) + 1/Pell(2*n)), where Pell(n) = A000129(n). (End)
Extensions
More terms from Colin Barker, Dec 20 2014
Comments