cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075888 Difference of successive primes squared divided by 24, (prime(n+1)^2-prime(n)^2)/24.

Original entry on oeis.org

1, 3, 2, 5, 3, 7, 13, 5, 17, 13, 7, 15, 25, 28, 10, 32, 23, 12, 38, 27, 43, 62, 33, 17, 35, 18, 37, 140, 43, 67, 23, 120, 25, 77, 80, 55, 85, 88, 30, 155, 32, 65, 33, 205, 217, 75, 38, 77, 118, 40, 205, 127, 130, 133, 45, 137, 93, 47, 240, 350, 103, 52, 105, 378, 167, 285
Offset: 3

Views

Author

Zak Seidov, Oct 17 2002

Keywords

Comments

For n>=3, prime(n+1)^2-prime(n)^2 is always divisible by 24.
It follows from the previous comment that for n>=3, prime(n)= sqrt(5^2 + k*24) where integer k>= 0 Then it follows from above that for n>=3, ((prime(n))^2 - 1)/24 always gives integral values - see A024702. [From Alexander R. Povolotsky, Sep 20 2008]

Examples

			a(4)=3 because (prime(5)^2-prime(4)^2)/24=(11^2-7^2)/24=3.
		

Crossrefs

Cf. A024702.

Programs

  • Magma
    [(NthPrime(n+1)^2 - NthPrime(n)^2)/24: n in [3..100]]; // Vincenzo Librandi, Mar 07 2015
  • Mathematica
    (#[[2]]-#[[1]])/24&/@(Partition[Prime[Range[3,70]],2,1]^2) (* Harvey P. Dale, Apr 06 2013 *)
    Table[(Prime[n + 1]^2 - Prime[n]^2)/24, {n,3,50}] (* G. C. Greubel, Feb 18 2017 *)
  • PARI
    j=[];for(n=3, 300, if(((floor((((prime(n+1))^2)-((prime(n))^2))/24))==(ceil(((((prime(n+1))^2)-((prime(n))^2))/24)))), j=concat(j, ((((prime(n+1))^2) - ((prime(n))^2))/24)), j=concat(j,-1)));j \\ Alexander R. Povolotsky, Sep 08 2008
    

Formula

a(n) = (prime(n+1)^2 - prime(n)^2)/24.