A076166 Primes p such that sum of cubes of even digits of p equals sum of cubes of odd digits of p.
16447, 41467, 41647, 44617, 46147, 46471, 76441, 114451, 144511, 146407, 404167, 404671, 414607, 415141, 416407, 440761, 441607, 451411, 460147, 460417, 461407, 470461, 476041, 476401, 541141, 610447, 640741, 644107, 644701, 647401, 704461, 740461, 746041, 764041
Offset: 1
Examples
16447 is OK because 1^3 + 7^3 = 6^3 + 4^3 + 4^3. 14467 has digits in nondecreasing order (is zerofree). Of the 60 permutations, 16447, 41467, 41647, 44617, 46147, 46471, 76441 are prime. - _David A. Corneth_, Dec 11 2018
Links
- Marius A. Burtea, Table of n, a(n) for n = 1..5869
Programs
-
Mathematica
oeQ[n_]:=Module[{idn = IntegerDigits[n]}, Total[Select[idn, OddQ]^3] == Total[ Select[idn, EvenQ]^3]]; Select[Range[100000], PrimeQ[#] && oeQ[#] &] (* Amiram Eldar, Dec 10 2018 after Harvey P. Dale at A076165 *)
-
PARI
isok(p) = isprime(p) && (d=digits(p)) && (sum(i=1, #d, d[i]^3*if(d[i]%2, 1, -1))==0); \\ Michel Marcus, Dec 13 2018
Comments