cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A076185 Numbers n such that n!! + 2 is prime.

Original entry on oeis.org

0, 1, 3, 5, 7, 9, 21, 23, 27, 57, 75, 103, 169, 219, 245, 461, 695, 1169, 3597, 3637, 7495, 27743, 28799, 32501
Offset: 1

Views

Author

Zak Seidov, Nov 02 2002

Keywords

Comments

a(25) > 50000. - Robert Price, Jan 18 2015
a(1)=0 since 0!!=1 and 1+2 = 3 is prime. - Robert Price, Jan 18 2015

Crossrefs

Cf. A006882, A080778 and A076186, A076188, A076189, A076190, A076193, A076194, A076195, A076196, A076197 for other values of s in n!! + 2^s.

Programs

Extensions

Edited and extended (n<4096) by Hugo Pfoertner, Jun 19 2003
One more term from Herman Jamke (hermanjamke(AT)fastmail.fm), Dec 30 2007
a(22) - a(23) from Robert Price, Oct 17 2012
a(24) from Robert Price, Jan 18 2015

A076186 Numbers n such that n!! + 2^2 is prime.

Original entry on oeis.org

0, 1, 3, 5, 7, 11, 17, 29, 39, 43, 73, 93, 315, 549, 2059, 5543, 6937, 22819, 34523
Offset: 1

Views

Author

Zak Seidov, Nov 02 2002

Keywords

Comments

a(20) > 50000. - Robert Price, Feb 05 2015
Since 0!! is defined to be unity (A006882), 0!! + 2^2 = 5, which is prime. - Robert Price, Mar 22 2015

Crossrefs

Cf. A006882, A080778 and A076185, A076188, A076189, A076190, A076193, A076194, A076195, A076196, A076197 for other values of s in n!! + 2^s.

Programs

  • Mathematica
    Select[Range[0, 1000], PrimeQ[#!! + 4] &] (* Robert Price, Mar 22 2015 *)

Extensions

Edited and extended (n<4096) by Hugo Pfoertner, Jun 19 2003
6937 from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 03 2008
Corrected by Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 03 2008
a(18) = 22819 from Robert Price, Oct 04 2012
a(19) = 34523 from Robert Price, Feb 05 2015
a(1)=0 prepended by Robert Price, Mar 22 2015

A076189 Numbers k such that k!! + 2^4 is prime.

Original entry on oeis.org

0, 1, 3, 5, 13, 17, 25, 27, 39, 45, 47, 53, 177, 217, 401, 637, 729, 787, 843, 3407, 8835, 10283, 14061, 21951
Offset: 1

Views

Author

Zak Seidov, Nov 02 2002

Keywords

Comments

a(25) > 50000. - Robert Price, Jan 19 2015
a(1)=0 since 0!!=1 and 1 + 2^4 = 17 is prime. - Robert Price, Jan 19 2015

Crossrefs

Cf. A006882, A080778 and A076185, A076186, A076188, A076190, A076193, A076194, A076195, A076196, A076197 for other values of s in n!! + 2^s.

Programs

  • Maple
    select(t -> isprime(doublefactorial(t)+16), [$0..1000]); # Robert Israel, Jan 19 2015
  • Mathematica
    lst={}; Do[If[PrimeQ[n!!+2^4], AppendTo[lst, n]], {n, 0, 50000}]; lst

Extensions

Edited and extended (n < 4096) by Hugo Pfoertner, Jun 19 2003
8835 from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 03 2008
a(22)-a(24) from Robert Price, Jan 01 2013
a(1)=0 prepended by Robert Price, Jan 19 2015

A076190 Numbers n such that n!! + 2^5 is prime.

Original entry on oeis.org

5, 7, 9, 11, 15, 21, 33, 41, 43, 45, 67, 93, 117, 327, 363
Offset: 1

Views

Author

Zak Seidov, Nov 02 2002

Keywords

Comments

a(16) > 50000. - Robert Price, Jan 02 2015

Crossrefs

Cf. A006882, A080778 and A076185, A076186, A076188, A076189, A076193, A076194, A076195, A076196, A076197 for other values of s in n!! + 2^s.

Programs

  • Mathematica
    lst={}; Do[If[PrimeQ[n!!+2^5], AppendTo[lst, n]], {n, 0,50000}]; lst
    Select[Range[400],PrimeQ[#!!+32]&] (* Harvey P. Dale, Jul 22 2021 *)

Extensions

Edited and checked (n<4096) by Hugo Pfoertner, Jun 19 2003

A076193 Numbers k such that k!! + 2^6 is prime.

Original entry on oeis.org

3, 5, 9, 11, 17, 19, 23, 51, 219, 421, 2845, 4691, 10617
Offset: 1

Views

Author

Zak Seidov, Nov 02 2002

Keywords

Comments

a(14) > 50000. - Robert Price, Mar 22 2015

Crossrefs

Cf. A006882, A080778 and A076185, A076186, A076188, A076189, A076190, A076194, A076195, A076196, A076197 (other values of s in n!! + 2^s).

Programs

  • Mathematica
    Select[Range[0, 1000], PrimeQ[#!! + 64] &] (* Robert Price, Mar 22 2015 *)

Extensions

Edited and extended (n < 4096) by Hugo Pfoertner, Jun 19 2003
a(12)-a(13) from Robert Price, Jan 23 2013

A076194 Numbers k such that k!! + 2^7 is prime.

Original entry on oeis.org

3, 7, 17, 19, 31, 43, 51, 163, 215, 269, 297, 457, 599, 633, 795, 999, 1027, 1261, 2567, 14315, 39505, 44725
Offset: 1

Views

Author

Zak Seidov, Nov 02 2002

Keywords

Comments

a(23) > 50000. - Robert Price, Mar 09 2015

Crossrefs

Cf. A006882, A080778 and A076185, A076186, A076188, A076189, A076190, A076193, A076195, A076196, A076197 for other values of s in n!! + 2^s.

Extensions

Edited and extended (n < 4096) by Hugo Pfoertner, Jun 19 2003
a(20) from Robert Price, Feb 04 2013
a(21)-a(22) from Robert Price, Mar 09 2015

A076195 Numbers k such that k!! + 2^8 is prime.

Original entry on oeis.org

0, 1, 5, 9, 11, 13, 23, 135, 187, 215, 233, 313, 333, 493, 1459, 2753, 2813, 6411, 31191, 38303, 41487
Offset: 1

Views

Author

Zak Seidov, Nov 02 2002

Keywords

Comments

a(22) > 50000. - Robert Price, Jan 14 2015
a(1)=0 since 0!!=1 and 1 + 2^8 = 257 is prime. - Robert Price, Jan 14 2015

Crossrefs

Cf. A006882, A080778 and A076185, A076186, A076188, A076189, A076190, A076193, A076194, A076196, A076197 for other values of s in n!! + 2^s.

Programs

  • Mathematica
    lst={}; Do[If[PrimeQ[n!!+2^8], AppendTo[lst, n]], {n, 0, 50000}]; lst

Extensions

Edited and extended (n < 4096) by Hugo Pfoertner, Jun 19 2003
a(18) from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 03 2008
a(1)=0 prepended and a(19)-a(21) from Robert Price, Jan 14 2015

A076196 Numbers k such that k!! + 2^9 is prime.

Original entry on oeis.org

7, 13, 15, 19, 25, 133, 135, 199, 223, 297, 299, 511, 15263, 16491, 18967, 32455
Offset: 1

Views

Author

Zak Seidov, Nov 02 2002

Keywords

Comments

a(17) > 50000. - Robert Price, Feb 15 2015

Crossrefs

Cf. A006882.
Numbers k such that k!! + 2^s is prime: A080778 (s=0), A076185 (s=1), A076186 (s=2), A076188 (s=3), A076189 (s=4), A076190 (s=5), A076193 (s=6), A076194 (s=7), A076195 (s=8), A076197 (s=10).

Programs

Extensions

Edited and extended (n < 4096) by Hugo Pfoertner, Jun 19 2003
a(13)-a(15) from Robert Price, Feb 25 2013
a(16) from Robert Price, Feb 15 2015

A076197 Numbers k such that k!! + 2^10 is prime.

Original entry on oeis.org

5, 7, 21, 33, 153, 167, 171, 391, 789, 1323, 2645, 8655, 10153, 39967, 45369, 47599
Offset: 1

Views

Author

Zak Seidov, Nov 02 2002

Keywords

Comments

a(17) > 50000. - Robert Price, Feb 24 2015

Crossrefs

Cf. A006882.
Numbers k such that k!! + 2^s is prime: A080778 (s=0), A076185 (s=1), A076186 (s=2), A076188 (s=3), A076189 (s=4), A076190 (s=5), A076193 (s=6), A076194 (s=7), A076195 (s=8), A076196 (s=9).

Programs

  • Mathematica
    lst={};Do[If[PrimeQ[n!!+2^10], (*Print[n];*)AppendTo[lst, n]], {n, 6!}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 26 2008 *)
  • Python
    from gmpy2 import is_prime
    A076197_list, g, h = [], 1, 1024
    for i in range(3,10**5,2):
        g *= i
        if is_prime(g+h):
            A076197_list.append(i) # Chai Wah Wu, May 31 2015

Extensions

Edited and extended (n<4096) by Hugo Pfoertner, Jun 19 2003
8655 from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 03 2008
a(13) from Robert Price, Mar 10 2013
a(14)-a(16) from Robert Price, Feb 24 2015

A257864 Numbers n such that n!! - 2^7 is prime.

Original entry on oeis.org

11, 13, 21, 47, 59, 77, 109, 129, 155, 163, 245, 337, 511, 1417, 3013, 3757, 4989, 8977, 12479, 12869
Offset: 1

Views

Author

Robert Price, May 11 2015

Keywords

Comments

a(21) > 50000. - Robert Price, May 11 2015
a(n) is odd. - Chai Wah Wu, May 12 2015

Crossrefs

Cf. A007749, A094144, A123910 (other forms of n!!-2^k)

Programs

  • Mathematica
    Select[Range[0, 50000], #!! - 128 > 0 && PrimeQ[#!! - 128] &]
  • PARI
    is(n)=ispseudoprime(prod(i=0,(n-1)\2, n-2*i)-128) \\ Charles R Greathouse IV, May 11 2015
    
  • Perl
    use ntheory ":all"; use Math::GMPz;
    sub mf2 { my($n,$P)=(shift,Math::GMPz->new(1)); $P *= $n-($_<<1) for 0..($n-1)>>1; $P; }
    for (1..100000) { say if is_prob_prime(mf2($)-128) } # _Dana Jacobsen, May 13 2015
  • Python
    from gmpy2 import is_prime, mpz
    A257864_list, g, h = [], mpz(105), mpz(128)
    for i in range(9,10**5,2):
        g *= i
        if is_prime(g-h):
            A257864_list.append(i) # Chai Wah Wu, May 12 2015
    
Showing 1-10 of 13 results. Next