A123984 Primes p such that p^3 is a sum of three successive primes, or primes in A076306(n).
11, 47, 223, 229, 313, 353, 397, 409, 571, 641, 661, 887, 1051, 1297, 1451, 1789, 2459, 2671, 2801, 2851, 3671, 4463, 4583, 4813, 4861, 5167, 5273, 5437, 5479, 5717, 5879, 6661, 6679, 6763, 6779, 7019, 7109, 7393, 7517, 7589, 7639, 7681, 7993, 8179, 8191, 9241
Offset: 1
Keywords
Links
- Donovan Johnson, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
spQ[n_]:=Module[{n3=n^3,a,b,c,d,e},c=NextPrime[Floor[n3/3]];b=NextPrime[ c,-1];a=NextPrime[b,-1];d=NextPrime[c];e=NextPrime[d];n3==a+b+c || n3==b+c+d || n3==c+d+e];Select[Prime[Range[1200]],spQ] (* Harvey P. Dale, Sep 23 2011 *)
-
PARI
{ p1=prime(1) ; p2=prime(2) ; p3=prime(3) ; n3=p1+p2+p3 ; for(i=1,100000000, if( ispower(n3,3,&n), if(isprime(n), print(n) ) ; ) ; n3 -= p1 ; p1=p2 ; p2=p3 ; p3=nextprime(p3+1) ; n3 += p3 ; ) ; } \\ R. J. Mathar, Jan 13 2007
Formula
Extensions
More terms from R. J. Mathar, Jan 13 2007
a(15)-a(46) from Donovan Johnson, Apr 27 2008
Comments