cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A076512 Denominator of cototient(n)/totient(n).

Original entry on oeis.org

1, 1, 2, 1, 4, 1, 6, 1, 2, 2, 10, 1, 12, 3, 8, 1, 16, 1, 18, 2, 4, 5, 22, 1, 4, 6, 2, 3, 28, 4, 30, 1, 20, 8, 24, 1, 36, 9, 8, 2, 40, 2, 42, 5, 8, 11, 46, 1, 6, 2, 32, 6, 52, 1, 8, 3, 12, 14, 58, 4, 60, 15, 4, 1, 48, 10, 66, 8, 44, 12, 70, 1, 72, 18, 8, 9, 60, 4, 78, 2, 2, 20, 82, 2, 64, 21
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 15 2002

Keywords

Comments

a(n)=1 iff n=A007694(k) for some k.
Numerator of phi(n)/n=Prod_{p|n} (1-1/p). - Franz Vrabec, Aug 26 2005
From Wolfdieter Lang, May 12 2011: (Start)
For n>=2, a(n)/A109395(n) = sum(((-1)^r)*sigma_r,r=0..M(n)) with the elementary symmetric functions (polynomials) sigma_r of the indeterminates {1/p_1,...,1/p_M(n)} if n = prod((p_j)^e(j),j=1..M(n)) where M(n)=A001221(n) and sigma_0=1.
This follows by expanding the above given product for phi(n)/n.
The n-th member of this rational sequence 1/2, 2/3, 1/2, 4/5, 1/3, 6/7, 1/2, 2/3, 2/5,... is also (2/n^2)*sum(k,with 1<=k=2.
Therefore, this scaled sum depends only on the distinct prime factors of n.
See also A023896. Proof via PIE (principle of inclusion and exclusion). (End)
In the sequence of rationals r(n)=eulerphi(n)/n: 1, 1/2, 2/3, 1/2, 4/5, 1/3, 6/7, 1/2, 2/3, 2/5, 10/11, 1/3, ... one can observe that new values are obtained for squarefree indices (A005117); while for a nonsquarefree number n (A013929), r(n) = r(A007947(n)), where A007947(n) is the squarefree kernel of n. - Michel Marcus, Jul 04 2015

Crossrefs

Cf. A076511 (numerator of cototient(n)/totient(n)), A051953.
Phi(m)/m = k: A000079 \ {1} (k=1/2), A033845 (k=1/3), A000244 \ {1} (k=2/3), A033846 (k=2/5), A000351 \ {1} (k=4/5), A033847 (k=3/7), A033850 (k=4/7), A000420 \ {1} (k=6/7), A033848 (k=5/11), A001020 \ {1} (k=10/11), A288162 (k=6/13), A001022 \ {1} (12/13), A143207 (k=4/15), A033849 (k=8/15), A033851 (k=24/35).

Programs

  • Magma
    [Numerator(EulerPhi(n)/n): n in [1..100]]; // Vincenzo Librandi, Jul 04 2015
  • Mathematica
    Table[Denominator[(n - EulerPhi[n])/EulerPhi[n]], {n, 80}] (* Alonso del Arte, May 12 2011 *)
  • PARI
    vector(80, n, numerator(eulerphi(n)/n)) \\ Michel Marcus, Jul 04 2015
    

Formula

a(n) = A000010(n)/A009195(n).

A308121 Irregular triangle read by rows: T(n,k) = A109395(n)*k-A076512(n)*A038566(n,k).

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 3, 4, 2, 1, 1, 2, 3, 4, 5, 6, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 1, 2, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 4, 5, 6, 1, 2, 3, 7, 14, 13, 4, 11, 2, 1, 8
Offset: 1

Views

Author

Jamie Morken, May 13 2019

Keywords

Comments

Row n has length A000010(n).
Row n > 1 has sum = n*A076512(n)/2.
First value on row(n) = A076511(n).
Last value on row(n) = A076512(n) for n > 1.
For n > 1, A109395(n) = Max(row) + Min(row).
For values x and y on row n > 1 at positions a and b on the row:
x + y = A109395(n), where a = A000010(n) - (b-1).
For n > 2 the penultimate value on row A002110(n) is given by
From Charlie Neder, Jun 05 2019: (Start)
If p is a prime dividing n, then row p*n consists of p copies of row n.
Conjecture: If n is odd, then row 2n can be obtained from row n by interchanging the first and second halves. (End)

Examples

			The sequence as an irregular triangle:
  n/k 1, 2, 3, 4, ...
   1: 0
   2: 1
   3: 1, 2
   4: 1, 1
   5: 1, 2, 3, 4
   6: 2, 1
   7: 1, 2, 3, 4, 5, 6
   8: 1, 1, 1, 1
   9: 1, 2, 1, 2, 1, 2
  10: 3, 4, 1, 2
  11: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
  12: 2, 1, 2, 1
  13: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
  14: 4, 5, 6, 1, 2, 3
  15: 7, 14, 13, 4, 11, 2, 1, 8
  ...
  Row sums: 0, 1, 3, 2, 10, 3, 21, 4, 9, 10, 55, 6, 78, 21, 60.
T(14,5) = A109395(14)*5 - A076512(14)*A038566(14,5) = 7*5 - 3*11 = 2.
T(210,2) = A109395(210)*2 - A076512(210)*A038566(210,2) = 35*2 - 8*11 = -18.
		

Crossrefs

Programs

  • Mathematica
    Flatten@ Table[With[{a = n/GCD[n, #], b = Numerator[#/n]}, MapIndexed[a First@ #2 - b #1 &, Flatten@ Position[GCD[Table[Mod[k, n], {k, n - 1}], n], 1] /. {} -> {1}]] &@ EulerPhi@ n, {n, 15}] (* Michael De Vlieger, Jun 06 2019 *)
  • PARI
    vtot(n) = select(x->(gcd(n, x)==1), vector(n, k, k));
    row(n) = my(q = eulerphi(n)/n, v = vtot(n)); vector(#v, k, denominator(q)*k - numerator(q)*v[k]); \\ Michel Marcus, May 14 2019

A307964 Irregular triangle read by rows: T(n,k) = A308121(A024556(n),k).

Original entry on oeis.org

7, 14, 13, 4, 11, 2, 1, 8, 3, 6, 5, 8, 3, 2, 5, 4, -1, 2, 1, 4, 13, 26, 19, 32, 25, 38, 31, 4, 17, 10, 23, 16, 29, 2, -5, 8, 1, 14, 7, 20, 11, 22, 33, 44, 31, 18, 29, 16, 27, 38, 1, 12, 23, 34, -3, 8, 19, 6, 17, 4, -9, 2, 13, 24, 5, 10, 7, 12, 9, 14, 11, 16, 5
Offset: 1

Views

Author

Jamie Morken, Jul 29 2019

Keywords

Comments

The sequence gives odd squarefree composite rows n in A308121, i.e., rows 15, 21, 33, 35, 39, 51, 55, 57, 65, ... given by A024556(n). These rows are the primitive rows of A308121.
Row n has length A000010(A024556(n)).
For row n:
T(n, 1) = T(n, 2) / 2.
T(n, phi(n)) - T(n, phi(n)-1) = T(n, 1).
T(n, phi(n)/2+1) - T(n, phi(n)/2) = T(n, 1).
From Charlie Neder, Jul 30 2019: (Start)
For row n, T(n, k) + T(n, phi(n)-k) is constant for all k.
For 2 <= k < lpf(A024556(n)), T(n, k) = k*T(n, 1). (End)

Examples

			The sequence as an irregular triangle:
1:  7, 14, 13, 4, 11, 2, 1, 8;
2:  3, 6, 5, 8, 3, 2, 5, 4, -1, 2, 1, 4;
3:  13, 26, 19, 32, 25, 38, 31, 4, 17, 10, 23, 16, 29, 2, -5, 8, 1, 14, 7, 20;
4:  11, 22, 33, 44, 31, 18, 29, 16, 27, 38, 1, 12, 23, 34, -3, 8, 19, 6, 17, 4, -9, 2, 13, 24;
5:  5, 10, 7, 12, 9, 14, 11, 16, 5, 2, 7, 4, 9, 6, 11, 8, -3, 2, -1, 4, 1, 6, 3, 8
6:  19, 38, 25, 44, 31, 50, 37, 56, 43, 62, 49, 4, 23, 10, 29, 16, 35, 22, 41, 28, 47, 2, -11, 8, -5, 14, 1, 20, 7, 26, 13, 32;
7:  3, 6, 9, 12, 7, 10, 13, 16, 3, 6, 9, 4, 7, 10, 13, 8, 3, 6, 1, 4, 7, 10, 5, 8, 3, -2, 1, 4, 7, 2, 5, 8, -5, -2, 1, 4, -1, 2, 5, 8;
8:  7, 14, 9, 16, 11, 18, 13, 20, 15, 22, 17, 24, 7, 2, 9, 4, 11, 6, 13, 8, 15, 10, 17, 12, -5, 2, -3, 4, -1, 6, 1, 8, 3, 10, 5, 12;
9:  17, 34, 51, 68, 37, 54, 71, 88, 57, 74, 43, 12, 29, 46, 63, 32, 49, 66, 83, 4, 21, 38, 7, 24, 41, 58, 27, 44, 61, -18, -1, 16, 33, 2, 19, 36, 53, 22, -9, 8, -23, -6, 11, 28, -3, 14, 31, 48;
  ...
		

Crossrefs

Programs

  • Mathematica
    rowsToCheck = 340;
    A024556 =
    Complement[Select[Range[3, rowsToCheck, 2], SquareFreeQ],
      Prime[Range[
        PrimePi[rowsToCheck]]]]; (* after Harvey P. Dale , Jan 26 2011 *)
    A308121 =
    Table[With[{a = n/GCD[n, #], b = Numerator[#/n]},
         MapIndexed[a First@#2 - b #1 &,
          Flatten@Position[GCD[Table[Mod[k, n], {k, n - 1}], n],
             1] /. {} -> {1}]] &@EulerPhi@n, {n,
       rowsToCheck}]; (* after Michael De Vlieger, Jun 06 2019 *)
    A307964 = {};
    For[i = 1, i <= Length[A024556], i++,
    AppendTo[A307964, A308121[[A024556[[i]]]]]]
    A307964flattened = Flatten[A307964]
    (* Jamie Morken, Apr 20 2021 *)

A107473 Sum of numerator and denominator of Product_{p|n, p prime} (1 - 1/p).

Original entry on oeis.org

2, 3, 5, 3, 9, 4, 13, 3, 5, 7, 21, 4, 25, 10, 23, 3, 33, 4, 37, 7, 11, 16, 45, 4, 9, 19, 5, 10, 57, 19, 61, 3, 53, 25, 59, 4, 73, 28, 21, 7, 81, 9, 85, 16, 23, 34, 93, 4, 13, 7, 83, 19, 105, 4, 19, 10, 31, 43, 117, 19, 121, 46, 11, 3, 113, 43, 133, 25, 113, 47, 141, 4, 145, 55, 23, 28
Offset: 1

Views

Author

Leroy Quet, May 27 2005

Keywords

Examples

			a(12) = 4 = 1+3 because (1 - 1/2)(1 - 1/3) = 1/3.
		

Crossrefs

Programs

  • Maple
    a:=proc(n) local b,ct,f; with(numtheory): b:=convert(factorset(n),list): ct:=nops(b): f:=simplify(product(1-1/b[j],j=1..ct)):numer(f)+denom(f) end: seq(a(n),n=1..100); # Emeric Deutsch, May 28 2005

Formula

a(n) = A076511(n) + A076512(n). - Michel Marcus, Aug 16 2019

Extensions

More terms from Emeric Deutsch, May 28 2005
Showing 1-4 of 4 results.