cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A308121 Irregular triangle read by rows: T(n,k) = A109395(n)*k-A076512(n)*A038566(n,k).

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 3, 4, 2, 1, 1, 2, 3, 4, 5, 6, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 1, 2, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 4, 5, 6, 1, 2, 3, 7, 14, 13, 4, 11, 2, 1, 8
Offset: 1

Views

Author

Jamie Morken, May 13 2019

Keywords

Comments

Row n has length A000010(n).
Row n > 1 has sum = n*A076512(n)/2.
First value on row(n) = A076511(n).
Last value on row(n) = A076512(n) for n > 1.
For n > 1, A109395(n) = Max(row) + Min(row).
For values x and y on row n > 1 at positions a and b on the row:
x + y = A109395(n), where a = A000010(n) - (b-1).
For n > 2 the penultimate value on row A002110(n) is given by
From Charlie Neder, Jun 05 2019: (Start)
If p is a prime dividing n, then row p*n consists of p copies of row n.
Conjecture: If n is odd, then row 2n can be obtained from row n by interchanging the first and second halves. (End)

Examples

			The sequence as an irregular triangle:
  n/k 1, 2, 3, 4, ...
   1: 0
   2: 1
   3: 1, 2
   4: 1, 1
   5: 1, 2, 3, 4
   6: 2, 1
   7: 1, 2, 3, 4, 5, 6
   8: 1, 1, 1, 1
   9: 1, 2, 1, 2, 1, 2
  10: 3, 4, 1, 2
  11: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
  12: 2, 1, 2, 1
  13: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
  14: 4, 5, 6, 1, 2, 3
  15: 7, 14, 13, 4, 11, 2, 1, 8
  ...
  Row sums: 0, 1, 3, 2, 10, 3, 21, 4, 9, 10, 55, 6, 78, 21, 60.
T(14,5) = A109395(14)*5 - A076512(14)*A038566(14,5) = 7*5 - 3*11 = 2.
T(210,2) = A109395(210)*2 - A076512(210)*A038566(210,2) = 35*2 - 8*11 = -18.
		

Crossrefs

Programs

  • Mathematica
    Flatten@ Table[With[{a = n/GCD[n, #], b = Numerator[#/n]}, MapIndexed[a First@ #2 - b #1 &, Flatten@ Position[GCD[Table[Mod[k, n], {k, n - 1}], n], 1] /. {} -> {1}]] &@ EulerPhi@ n, {n, 15}] (* Michael De Vlieger, Jun 06 2019 *)
  • PARI
    vtot(n) = select(x->(gcd(n, x)==1), vector(n, k, k));
    row(n) = my(q = eulerphi(n)/n, v = vtot(n)); vector(#v, k, denominator(q)*k - numerator(q)*v[k]); \\ Michel Marcus, May 14 2019

A002618 a(n) = n*phi(n).

Original entry on oeis.org

1, 2, 6, 8, 20, 12, 42, 32, 54, 40, 110, 48, 156, 84, 120, 128, 272, 108, 342, 160, 252, 220, 506, 192, 500, 312, 486, 336, 812, 240, 930, 512, 660, 544, 840, 432, 1332, 684, 936, 640, 1640, 504, 1806, 880, 1080, 1012, 2162, 768, 2058, 1000
Offset: 1

Views

Author

Keywords

Comments

Also Euler phi function of n^2.
For n >= 3, a(n) is also the size of the automorphism group of the dihedral group of order 2n. This automorphism group is isomorphic to the group of transformations x -> ax + b, where a, b and x are integers modulo n and a is coprime to n. Its order is n*phi(n). - Ola Veshta (olaveshta(AT)my-deja.com), Mar 18 2001
Order of metacyclic group of polynomial of degree n. - Artur Jasinski, Jan 22 2008
It appears that this sequence gives the number of permutations of 1, 2, 3, ..., n that are arithmetic progressions modulo n. - John W. Layman, Aug 27 2008
The conjecture by Layman is correct. Obviously any such permutation must have an increment that is prime to n, and almost as obvious that any such increment will work, with any starting value; hence phi(n) * n total. - Franklin T. Adams-Watters, Jun 09 2009
Consider the numbers from 1 to n^2 written line by line as an n X n square: a(n) = number of numbers that are coprime to all their horizontal and vertical immediate neighbors. - Reinhard Zumkeller, Apr 12 2011
n -> a(n) is injective: a(m) = a(n) implies m = n. - Franz Vrabec, Dec 12 2012 (See Mathematics Stack Exchange link for a proof.)
a(p) = p*(p-1) a pronic number, see A036689 and A002378. - Fred Daniel Kline, Mar 30 2015
Conjecture: All the rational numbers Sum_{i=j..k} 1/a(i) with 0 < min{2,k} <= j <= k have pairwise distinct fractional parts. - Zhi-Wei Sun, Sep 24 2015
From Jianing Song, Aug 25 2023: (Start)
a(n) is the order of the holomorph (see the Wikipedia link) of the cyclic group of order n. Note that Hol(C_n) and Aut(D_{2n}) are isomorphic unless n = 2, where D_{2n} is the dihedral group of order 2*n. See the Wordpress link.
The odd-indexed terms form a subsequence of A341298: the holomorph of an abelian group of odd order is a complete group. See Theorem 3.2, Page 618 of the W. Peremans link. (End)

Examples

			a(4) = 8 since phi(4) = 2 and 4 * 2 = 8.
a(5) = 20 since phi(5) = 4 and 5 * 4 = 20.
		

References

  • Peter Giblin, Primes and Programming: An Introduction to Number Theory with Computing. Cambridge: Cambridge University Press (1993) p. 116, Exercise 1.10.
  • J. L. Lagrange, Oeuvres, Vol. III Paris 1869.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First column of A047916.
Cf. A002619, A011755 (partial sums), A047918, A000010, A053650, A053191, A053192, A036689, A058161, A009262, A082473 (same terms, sorted into ascending order), A256545, A327172 (a left inverse), A327173, A065484.
Subsequence of A323333.

Programs

Formula

Multiplicative with a(p^e) = (p-1)*p^(2e-1). - David W. Wilson, Aug 01 2001
Dirichlet g.f.: zeta(s-2)/zeta(s-1). - R. J. Mathar, Feb 09 2011
a(n) = A173557(n) * A102631(n). - R. J. Mathar, Mar 30 2011
From Wolfdieter Lang, May 12 2011: (Start)
a(n)/2 = A023896(n), n >= 2.
a(n)/2 = (1/n) * Sum_{k=1..n-1, gcd(k,n)=1} k, n >= 2 (see A023896 and A076512/A109395). (End)
a(n) = lcm(phi(n^2),n). - Enrique Pérez Herrero, May 11 2012
a(n) = phi(n^2). - Wesley Ivan Hurt, Jun 16 2013
a(n) = A009195(n) * A009262(n). - Michel Marcus, Oct 24 2013
G.f.: -x + 2*Sum_{k>=1} mu(k)*k*x^k/(1 - x^k)^3. - Ilya Gutkovskiy, Jan 03 2017
a(n) = A082473(A327173(n)), A327172(a(n)) = n. -- Antti Karttunen, Sep 29 2019
Sum_{n>=1} 1/a(n) = 2.203856... (A065484). - Amiram Eldar, Sep 30 2019
Define f(x) = #{n <= x: a(n) <= x}. Gabdullin & Iudelevich show that f(x) ~ c*sqrt(x) for c = Product_{p prime} (1 + 1/(p*(p - 1 + sqrt(p^2 - p)))) = 1.3651304521525857... - Charles R Greathouse IV, Mar 16 2022
a(n) = Sum_{d divides n} A001157(d)*A046692(n/d); that is, the Dirichlet convolution of sigma_2(n) and the Dirichlet inverse of sigma_1(n). - Peter Bala, Jan 26 2024

Extensions

Better description from Labos Elemer, Feb 18 2000

A023896 Sum of positive integers in smallest positive reduced residue system modulo n. a(1) = 1 by convention.

Original entry on oeis.org

1, 1, 3, 4, 10, 6, 21, 16, 27, 20, 55, 24, 78, 42, 60, 64, 136, 54, 171, 80, 126, 110, 253, 96, 250, 156, 243, 168, 406, 120, 465, 256, 330, 272, 420, 216, 666, 342, 468, 320, 820, 252, 903, 440, 540, 506, 1081, 384, 1029, 500, 816, 624, 1378, 486, 1100, 672
Offset: 1

Views

Author

Keywords

Comments

Sum of totatives of n, i.e., sum of integers up to n and coprime to n.
a(1) = 1, since 1 is coprime to any positive integer.
Row sums of A038566. - Wolfdieter Lang, May 03 2015
Islam & Manzoor prove that a(n) is an injection for n > 1, see links. In other words, if a(m) = a(n), and min(m, n) > 1, then m = n. - Muhammed Hedayet, May 19 2024

Examples

			G.f. = x + x^2 + 3*x^3 + 4*x^4 + 10*x^5 + 6*x^6 + 21*x^7 + 16*x^8 + 27*x^9 + ...
a(12) = 1 + 5 + 7 + 11 = 24.
n = 40: The smallest positive reduced residue system modulo 40 is {1, 3, 7, 9, 11, 13, 17, 19, 21, 23, 27, 29, 31, 33, 37, 39}. The sum is a(40) = 320. Average is 20.
		

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 48, problem 16, the function phi_1(n).
  • David M. Burton, Elementary Number Theory, p. 171.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 2001, p. 163.
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 111.

Crossrefs

Programs

  • Haskell
    a023896 = sum . a038566_row  -- Reinhard Zumkeller, Mar 04 2012
    
  • Magma
    [1] cat [n*EulerPhi(n)/2: n in [2..70]]; // Vincenzo Librandi, May 16 2015
    
  • Maple
    A023896 := proc(n)
        if n = 1 then
            1;
        else
            n*numtheory[phi](n)/2 ;
        end if;
    end proc: # R. J. Mathar, Sep 26 2013
  • Mathematica
    a[ n_ ] = n/2*EulerPhi[ n ]; a[ 1 ] = 1; Table[a[n], {n, 56}]
    a[ n_] := If[ n < 2, Boole[n == 1], Sum[ k Boole[1 == GCD[n, k]], { k, n}]]; (* Michael Somos, Jul 08 2014 *)
  • PARI
    {a(n) = if(n<2, n>0, n*eulerphi(n)/2)};
    
  • PARI
    A023896(n)=n*eulerphi(n)\/2 \\ about 10% faster. - M. F. Hasler, Feb 01 2021
    
  • Python
    from sympy import totient
    def A023896(n): return 1 if n == 1 else n*totient(n)//2 # Chai Wah Wu, Apr 08 2022
    
  • SageMath
    def A023896(n): return 1 if n == 1 else n*euler_phi(n)//2
    print([A023896(n) for n in range(1, 57)])  # Peter Luschny, Dec 03 2023

Formula

a(n) = n*A023022(n) for n > 2.
a(n) = phi(n^2)/2 = n*phi(n)/2 = A002618(n)/2 if n > 1, a(1)=1. See the Apostol reference for this exercise.
a(n) = Sum_{1 <= k < n, gcd(k, n) = 1} k.
If n = p is a prime, a(p) = T(p-1) where T(k) is the k-th triangular number (A000217). - Robert G. Wilson v, Jul 31 2004
Equals A054521 * [1,2,3,...]. - Gary W. Adamson, May 20 2007
a(n) = A053818(n) * A175506(n) / A175505(n). - Jaroslav Krizek, Aug 01 2010
If m,n > 1 and gcd(m,n) = 1 then a(m*n) = 2*a(m)*a(n). - Thomas Ordowski, Nov 09 2014
G.f.: Sum_{n>=1} mu(n)*n*x^n/(1-x^n)^3, where mu(n) = A008683(n). - Mamuka Jibladze, Apr 24 2015
G.f. A(x) satisfies A(x) = x/(1 - x)^3 - Sum_{k>=2} k * A(x^k). - Ilya Gutkovskiy, Sep 06 2019
For n > 1: a(n) = (n*A076512(n)/2)*A009195(n). - Jamie Morken, Dec 16 2019
Sum_{n>=1} 1/a(n) = 2 * A065484 - 1 = 3.407713... . - Amiram Eldar, Oct 09 2023

Extensions

Typos in programs corrected by Zak Seidov, Aug 03 2010
Name and example edited by Wolfdieter Lang, May 03 2015

A109395 Denominator of phi(n)/n = Product_{p|n} (1 - 1/p); phi(n)=A000010(n), the Euler totient function.

Original entry on oeis.org

1, 2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 3, 13, 7, 15, 2, 17, 3, 19, 5, 7, 11, 23, 3, 5, 13, 3, 7, 29, 15, 31, 2, 33, 17, 35, 3, 37, 19, 13, 5, 41, 7, 43, 11, 15, 23, 47, 3, 7, 5, 51, 13, 53, 3, 11, 7, 19, 29, 59, 15, 61, 31, 7, 2, 65, 33, 67, 17, 69, 35, 71, 3, 73, 37, 15, 19, 77, 13, 79, 5, 3
Offset: 1

Views

Author

Franz Vrabec, Aug 26 2005

Keywords

Comments

a(n)=2 iff n=2^k (k>0); otherwise a(n) is odd. If p is prime, a(p)=p; the converse is false, e.g.: a(15)=15. It is remarkable that this sequence often coincides with A006530, the largest prime P dividing n. Theorem: a(n)=P if and only if for every prime p < P in n there is some prime q in n with p|(q-1). - Franz Vrabec, Aug 30 2005

Examples

			a(10) = 10/gcd(10,phi(10)) = 10/gcd(10,4) = 10/2 = 5.
		

Crossrefs

Cf. A076512 for the numerator.
Phi(m)/m = k: A000079 \ {1} (k=1/2), A033845 (k=1/3), A000244 \ {1} (k=2/3), A033846 (k=2/5), A000351 \ {1} (k=4/5), A033847 (k=3/7), A033850 (k=4/7), A000420 \ {1} (k=6/7), A033848 (k=5/11), A001020 \ {1} (k=10/11), A288162 (k=6/13), A001022 \ {1} (12/13), A143207 (k=4/15), A033849 (k=8/15), A033851 (k=24/35).

Programs

Formula

a(n) = n/gcd(n, phi(n)) = n/A009195(n).
From Antti Karttunen, Feb 09 2019: (Start)
a(n) = denominator of A173557(n)/A007947(n).
a(2^n) = 2 for all n >= 1.
(End)
From Amiram Eldar, Jul 31 2020: (Start)
Asymptotic mean of phi(n)/n: lim_{m->oo} (1/m) * Sum_{n=1..m} A076512(n)/a(n) = 6/Pi^2 (A059956).
Asymptotic mean of n/phi(n): lim_{m->oo} (1/m) * Sum_{n=1..m} a(n)/A076512(n) = zeta(2)*zeta(3)/zeta(6) (A082695). (End)

A009262 a(n) = lcm(n, phi(n)).

Original entry on oeis.org

1, 2, 6, 4, 20, 6, 42, 8, 18, 20, 110, 12, 156, 42, 120, 16, 272, 18, 342, 40, 84, 110, 506, 24, 100, 156, 54, 84, 812, 120, 930, 32, 660, 272, 840, 36, 1332, 342, 312, 80, 1640, 84, 1806, 220, 360, 506, 2162, 48, 294, 100, 1632, 312, 2756, 54, 440, 168, 684, 812, 3422
Offset: 1

Views

Author

Keywords

Comments

This is a divisibility sequence: if n divides m, a(n) divides a(m). - Franklin T. Adams-Watters, Mar 30 2010
a(n) = n iff n is in A007694.
a(n) is a divisor of A299822(n). It is a proper divisor iff n is in A069209. - Max Alekseyev, Oct 11 2024

Crossrefs

Programs

Formula

a(n) = A000010(n) * A109395(n) = n * A076512(n) = A299822(n) / gcd(A007947(n),phi(A007947(n))). - Max Alekseyev, Oct 11 2024

A241194 Numerator of phi(p-1)/(p-1), where phi is Euler's totient function and p = prime(n).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 5, 3, 4, 1, 2, 2, 11, 6, 14, 4, 10, 12, 1, 4, 20, 5, 1, 2, 16, 26, 1, 3, 2, 24, 8, 22, 18, 4, 4, 1, 41, 21, 44, 4, 36, 1, 3, 10, 8, 12, 56, 6, 14, 48, 4, 2, 1, 65, 33, 4, 22, 12, 46, 36, 16, 12, 4, 39, 8, 2, 86, 28, 5, 89, 20, 10, 2, 95
Offset: 1

Views

Author

T. D. Noe, Apr 17 2014

Keywords

Comments

The denominators are in A241195. The new minima of phi(p-1)/(p-1) occur at primes listed in A241196. The numerator and denominator of those terms are in A241197 and A241198.
For primes p>2, the fraction phi(p - 1)/(p - 1) has the maximum value = 1/2 if and only if p is in A019434. - Geoffrey Critzer, Dec 30 2014

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 117.

Crossrefs

Programs

  • Magma
    [Numerator(EulerPhi(NthPrime(n)-1)/(NthPrime(n)-1)): n in [1..80]]; // Vincenzo Librandi, Apr 06 2015
  • Maple
    seq(numer(numtheory:-phi(ithprime(i)-1)/(ithprime(i)-1)), i=1..100); # Robert Israel, Jan 11 2015
  • Mathematica
    Numerator[Table[EulerPhi[p - 1]/(p - 1), {p, Prime[Range[100]]}]]
  • PARI
    lista(nn) = forprime(p=2, nn, print1(numerator(eulerphi(p-1)/(p-1)), ", ")); \\ Michel Marcus, Jan 03 2015
    

Formula

From Amiram Eldar, Jul 31 2020: (Start)
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{n=1..m} a(n)/A241195(n) = 0.373955... (Artin's constant, A005596).
Asymptotic mean of inverse ratio: lim_{m->oo} (1/m) * Sum_{n=1..m} A241195(n)/a(n) = 2.826419... (Murata's constant, A065485). (End)
a(n) = A076512(A006093(n)). - Ridouane Oudra, Mar 24 2025

A332880 If n = Product (p_j^k_j) then a(n) = numerator of Product (1 + 1/p_j).

Original entry on oeis.org

1, 3, 4, 3, 6, 2, 8, 3, 4, 9, 12, 2, 14, 12, 8, 3, 18, 2, 20, 9, 32, 18, 24, 2, 6, 21, 4, 12, 30, 12, 32, 3, 16, 27, 48, 2, 38, 30, 56, 9, 42, 16, 44, 18, 8, 36, 48, 2, 8, 9, 24, 21, 54, 2, 72, 12, 80, 45, 60, 12, 62, 48, 32, 3, 84, 24, 68, 27, 32, 72
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 28 2020

Keywords

Comments

Numerator of sum of reciprocals of squarefree divisors of n.
(6/Pi^2) * A332881(n)/a(n) is the asymptotic density of numbers that are coprime to their digital sum in base n+1 (see A094387 and A339076 for bases 2 and 10). - Amiram Eldar, Nov 24 2022

Examples

			1, 3/2, 4/3, 3/2, 6/5, 2, 8/7, 3/2, 4/3, 9/5, 12/11, 2, 14/13, 12/7, 8/5, 3/2, 18/17, ...
		

Crossrefs

Programs

  • Maple
    a:= n-> numer(mul(1+1/i[1], i=ifactors(n)[2])):
    seq(a(n), n=1..80);  # Alois P. Heinz, Feb 28 2020
  • Mathematica
    Table[If[n == 1, 1, Times @@ (1 + 1/#[[1]] & /@ FactorInteger[n])], {n, 1, 70}] // Numerator
    Table[Sum[MoebiusMu[d]^2/d, {d, Divisors[n]}], {n, 1, 70}] // Numerator
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A332880(n) = numerator(A001615(n)/n);

Formula

Numerators of coefficients in expansion of Sum_{k>=1} mu(k)^2*x^k/(k*(1 - x^k)).
a(n) = numerator of Sum_{d|n} mu(d)^2/d.
a(n) = numerator of psi(n)/n.
a(p) = p + 1, where p is prime.
a(n) = A001615(n) / A306695(n) = A001615(n) / gcd(n, A001615(n)). - Antti Karttunen, Nov 15 2021
From Amiram Eldar, Nov 24 2022: (Start)
Asymptotic means:
Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A332881(k) = 15/Pi^2 = 1.519817... (A082020).
Limit_{m->oo} (1/m) * Sum_{k=1..m} A332881(k)/a(k) = Product_{p prime} (1 - 1/(p*(p+1))) = 0.704442... (A065463). (End)

A076511 Numerator of cototient(n)/totient(n).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 4, 7, 1, 1, 2, 1, 3, 3, 6, 1, 2, 1, 7, 1, 4, 1, 11, 1, 1, 13, 9, 11, 2, 1, 10, 5, 3, 1, 5, 1, 6, 7, 12, 1, 2, 1, 3, 19, 7, 1, 2, 3, 4, 7, 15, 1, 11, 1, 16, 3, 1, 17, 23, 1, 9, 25, 23, 1, 2, 1, 19, 7, 10, 17, 9, 1, 3, 1, 21, 1, 5, 21, 22, 31, 6, 1, 11, 19, 12, 11
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 15 2002

Keywords

Crossrefs

Cf. A076512 (denominators), A000010, A009195, A051953, A082695, A109395.

Programs

  • Mathematica
    Table[Numerator[n/EulerPhi[n] - 1], {n, 1, 100}] (* Amiram Eldar, Nov 21 2022 *)
  • PARI
    A076511(n) = numerator((n-eulerphi(n))/eulerphi(n)); \\ Antti Karttunen, Sep 07 2018

Formula

a(n) = A051953(n)/A009195(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A076512(k) = zeta(2)*zeta(3)/zeta(6) - 1 = A082695 - 1 = 0.943596... . Amiram Eldar, Nov 21 2022

A259850 Numbers k such that k/phi(k) equals sigma(x)/x for some x<=k.

Original entry on oeis.org

1, 3, 8, 9, 14, 15, 16, 21, 26, 27, 28, 32, 40, 45, 50, 52, 56, 63, 64, 75, 80, 81, 98, 100, 104, 112, 128, 130, 135, 144, 147, 160, 162, 182, 189, 192, 196, 200, 208, 216, 224, 225, 243, 250, 255, 256, 260, 288, 310, 320, 324, 338, 364, 372, 375, 384, 392, 400
Offset: 1

Views

Author

Michel Marcus, Jul 07 2015

Keywords

Comments

This sequence is motivated by the fact that sigma(n)/n and n/phi(n) are both >= 1.
For the first few terms, we get these ratios: 1, 3/2, 2, 3/2, 7/3, 15/8, 2, ....
The ordered list of distinct values up to a given limit is:
up to 10^1: [1, 3/2, 2];
up to 10^2: [1, 3/2, 7/4, 15/8, 2, 13/6, 7/3, 5/2];
up to 10^3: [1, 3/2, 7/4, 15/8, 31/16, 255/128, 2, 13/6, 7/3, 5/2, 91/36, 31/12, 85/32, 65/24, 35/12, 3, 31/10, 13/4];
up to 10^4: [1, 3/2, 7/4, 15/8, 31/16, 255/128, 2, 13/6, 7/3, 5/2, 91/36, 31/12, 85/32, 65/24, 403/144, 1105/384, 35/12, 635/216, 2555/864, 3, 217/72, 127/42, 73/24, 31/10, 51/16, 13/4, 1651/504, 527/160, 403/120, 221/64, 7/2, 127/36, 217/60];
up to 10^5: [1, 3/2, 7/4, 15/8, 31/16, 255/128, 65535/32768, 2, 33/16, 267/128, 13/6, 7/3, 133/54, 5/2, 91/36, 31/12, 85/32, 21845/8192, 65/24, 11/4, 89/32, 403/144, 1105/384, 35/12, 635/216, 2555/864, 3, 217/72, 127/42, 73/24, 665/216, 595/192, 31/10, 19/6, 51/16, 77/24, 1397/432, 13/4, 1651/504, 527/160, 949/288, 403/120, 221/64, 7/2, 127/36, 511/144, 6851/1920, 217/60, 119/32];
tending towards the intersection of the 2 sets {sigma(n)/n} (A017665/A017666) and {n/phi(n)} (A109395/A076512).
If k is a term, then so are all numbers > k with the same set of prime factors as k. - Robert Israel, Mar 09 2023

Examples

			1/phi(1) = 1/1 = sigma(1)/1, so 1 is in the sequence.
3/phi(3) = 3/2 = sigma(2)/2, so 3 is in the sequence.
8/phi(8) = 2/1 = sigma(6)/6, so 8 is in the sequence.
		

Crossrefs

Primitive elements: A361363.

Programs

  • Maple
    R:= NULL: count:= 0: V:= {}:
    for k from 1 while count < 100 do
     V:= V union  {numtheory:-sigma(k)/k};
     if member(k/numtheory:-phi(k), V) then R:= R,k; count:= count+1 fi;
    od:
    R; # Robert Israel, Mar 08 2023
  • PARI
    lista(nn) = {vs = vector(nn, n, sigma(n)/n); ve = vector(nn, n, n/eulerphi(n)); vr = []; for (n=1, #ve, ven = ve[n]; for (m=1, n, if ((vs[m] == ven), print1(n, ", "); break);););}

Extensions

Name corrected by Michel Marcus, Nov 25 2020

A295315 a(n) = phi(sigma(n)) / gcd(sigma(n), phi(sigma(n))).

Original entry on oeis.org

1, 2, 1, 6, 1, 1, 1, 8, 12, 1, 1, 3, 3, 1, 1, 30, 1, 8, 2, 2, 1, 1, 1, 4, 30, 2, 2, 3, 4, 1, 1, 4, 1, 1, 1, 72, 9, 4, 3, 4, 2, 1, 5, 2, 4, 1, 1, 15, 12, 20, 1, 3, 1, 4, 1, 4, 2, 4, 4, 2, 15, 1, 6, 126, 2, 1, 8, 2, 1, 1, 1, 32, 18, 6, 15, 12, 1, 2, 2, 10, 10, 2, 2, 3, 1, 10, 4, 4, 4, 4, 3, 2, 1, 1, 4, 2, 3, 12, 4
Offset: 1

Views

Author

Antti Karttunen, Nov 22 2017

Keywords

Crossrefs

Programs

  • PARI
    a(n) = my(sn = sigma(n)); eulerphi(sn) / gcd(sn, eulerphi(sn)); \\ Michel Marcus, Nov 23 2017

Formula

a(n) = A062401(n) / A295313(n) = A062401(n) / A009195(A000203(n)).
a(n) = A076512(A000203(n)).
Showing 1-10 of 21 results. Next