cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A076745 a(n) = the least positive integer k such that b(k) = n, where b(k) (A076526) is defined by b(k) = r * max{e_1,...,e_r} if k = p_1^e_1 *...* p_r^e_r is the canonical prime factorization of k.

Original entry on oeis.org

2, 4, 8, 12, 32, 24, 128, 48, 120, 96, 2048, 192, 8192, 384, 480, 768, 131072, 960, 524288, 3072, 1920, 6144, 8388608, 3840, 36960, 24576, 7680, 13440, 536870912, 15360, 2147483648, 26880, 30720, 393216, 147840, 53760, 137438953472, 1572864, 122880, 107520, 2199023255552
Offset: 1

Views

Author

Joseph L. Pe, Nov 11 2002

Keywords

Examples

			a(12) = 2 * max{1,2} = 4 since 12 = 2^2 * 3^1 and 12 is the least k for which b(k) = 4. Hence a(4) = 12.
		

Crossrefs

Cf. A076526.

Programs

  • Mathematica
    a[n_] := Min[Table[2^d*Times @@ Prime[Range[2, n/d]], {d, Divisors[n]}]]; Array[a, 50] (* Amiram Eldar, Sep 08 2024 *)
  • PARI
    a(n) = {my(f = factor(n), nd = numdiv(f), v = vector(nd), k = 0); fordiv(f, d, k++; v[k] = 2^d * prod(i = 1, n/d-1, prime(i+1))); vecmin(v);} \\ Amiram Eldar, Sep 08 2024

Formula

From Amiram Eldar, Sep 08 2024: (Start)
a(n) = Min_{d|n} (2^d * Product_{i=1..n/d-1} prime(i+1)).
a(p) = 2^p for a prime p.
a(2*p) = 3*2^p for a prime p.
a(3*p) = 15*2^p for a prime p > 2. (End)

Extensions

More terms from Amiram Eldar, Sep 08 2024

A076558 a(n) = r * min(e_1, ..., e_r), where n = p_1^e_1 . .... p_r^e_r is the canonical prime factorization of n, a(1) = 0.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 1, 2, 2, 4, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 3, 2, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 1, 2, 2, 6, 2, 3, 1, 2, 2, 3, 1, 4, 1, 2, 2, 2, 2, 3, 1, 2, 4, 2, 1, 3, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 2, 1, 2, 2, 4
Offset: 1

Views

Author

Joseph L. Pe, Nov 10 2002

Keywords

Comments

Omega(n) >= a(n) for n >= 1, where Omega(n) = the number of prime factors of n, counting multiplicity.
Positions of records are A000079. - David A. Corneth, May 05 2020

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{pf}, pf = Transpose[FactorInteger[n]]; Length[pf[[1]]]*Min[pf[[2]]]]; Table[a[i] - Boole[i == 1], {i, 100}]
    (* Second program: *)
    Table[Length[#] Min[#] - Boole[n == 1] &@ FactorInteger[n][[All, -1]], {n, 100}] (* Michael De Vlieger, Jul 12 2017 *)
  • PARI
    a(n) = if(n == 1, 0, my(e = factor(n)[, 2]); vecmin(e) * #e); \\ Amiram Eldar, Sep 08 2024
  • Python
    from sympy import factorint
    def a(n):
        f=factorint(n)
        l=[f[p] for p in f]
        return 0 if n==1 else len(l)*min(l)
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 13 2017
    

Formula

a(n) = A001221(n) * A051904(n). - Antti Karttunen, Jul 12 2017

Extensions

a(1)=0 prepended by Antti Karttunen, Jul 12 2017

A335603 a(n) = p*q where p is the sequential number (or PrimePi, A000720) of the largest prime divisor of n, and q is the maximal exponent in the canonical representation of n (A051903).

Original entry on oeis.org

0, 1, 2, 2, 3, 2, 4, 3, 4, 3, 5, 4, 6, 4, 3, 4, 7, 4, 8, 6, 4, 5, 9, 6, 6, 6, 6, 8, 10, 3, 11, 5, 5, 7, 4, 4, 12, 8, 6, 9, 13, 4, 14, 10, 6, 9, 15, 8, 8, 6, 7, 12, 16, 6, 5, 12, 8, 10, 17, 6, 18, 11, 8, 6, 6, 5, 19, 14, 9, 4, 20, 6, 21, 12, 6, 16, 5, 6, 22, 12
Offset: 1

Views

Author

Todor Szimeonov, Jun 11 2020

Keywords

Comments

a(n) is like a real-valued footprint of n.

Crossrefs

A076526 is a similar "footprint" of n.

Programs

  • Maple
    with(numtheory):
    a:= n-> pi(max(factorset(n)))*max(0, seq(i[2], i=ifactors(n)[2])):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jun 11 2020
  • Mathematica
    a[n_] := PrimePi[(f = FactorInteger[n])[[-1, 1]]] * Max[f[[;; , 2]]]; Array[a, 100] (* Amiram Eldar, Jun 11 2020 *)
  • PARI
    a(n) = if (n==1, 0, my(f=factor(n)); primepi(vecmax(f[, 1]))*vecmax(f[, 2])); \\ Michel Marcus, Jun 11 2020

Formula

a(n) = A000720(A006530(n)) * A051903(n). - Alois P. Heinz, Jun 11 2020

Extensions

Edited by N. J. A. Sloane, Jun 15 2020
Showing 1-3 of 3 results.