cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076540 Number of branches in all ordered trees with n edges.

Original entry on oeis.org

1, 3, 11, 41, 154, 582, 2211, 8437, 32318, 124202, 478686, 1849498, 7161556, 27784460, 107980515, 420300045, 1638238710, 6393535170, 24980504010, 97704407790, 382509199020, 1498824792660, 5877754713870, 23067328421826, 90590960500524, 356002519839652
Offset: 1

Views

Author

Emeric Deutsch, Oct 18 2002

Keywords

Comments

Row sums of triangle A136535. - Gary W. Adamson, Jan 04 2008
The average of the n terms a(1),...,a(n) is C(n) = A000108(n), the n-th Catalan number. - Franklin T. Adams-Watters, May 20 2010
Binomial transform of A005717. - Peter Luschny, Jan 17 2012
a(n) is the number of parking functions of size n avoiding the patterns 213, 312, and 321. - Lara Pudwell, Apr 10 2023

Examples

			a(3)=11 because the five ordered trees with 3 edges have 1+3+2+2+3 = 11 branches altogether.
		

Crossrefs

First differences of A001791. First differences are in A073663.

Programs

  • Magma
    [Binomial(2*n,n)+Binomial(2*n,n-1)+Binomial(2*n,n-2): n in [0..30]]; // Vincenzo Librandi, Jun 17 2015
  • Mathematica
    Table[Binomial[2 n, n] + Binomial[2 n, n-1] + Binomial[2 n, n-2], {n, 0, 30}] (* Vincenzo Librandi, Jun 17 2015 *)
  • PARI
    vector(30, n, binomial(2*n-1,n-2)+binomial(2*n-2,n-1)) \\ Michel Marcus, Jun 17 2015
    

Formula

a(n) = (3*n^2-2*n+1)*binomial(2*n, n)/(2*(n+1)*(2*n-1)).
G.f.: (1-z)*(C-1)/sqrt(1-4*z), where C=(1-sqrt(1-4*z))/(2*z) is the Catalan function.
a(n) = binomial(2n-1, n-2) + binomial(2n-2, n-1). - David Callan, Nov 06 2003
a(n+1) = [x^n](1 + x + x^2)*(1 + x)^(2*n) = binomial(2*n,n) + binomial(2*n,n-1) + binomial(2*n,n-2). - Peter Bala, Jun 15 2015
D-finite with recurrence (n+1)*a(n) +(-7*n+1)*a(n-1) +2*(7*n-12)*a(n-2) +4*(-2*n+7)*a(n-3)=0. - R. J. Mathar, Jul 26 2022