cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A177194 Fibonacci numbers whose decimal expansion does not contain any digit 0.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 987, 1597, 2584, 4181, 6765, 17711, 28657, 46368, 121393, 196418, 317811, 514229, 1346269, 3524578, 9227465, 24157817, 63245986, 267914296, 433494437, 53316291173, 86267571272
Offset: 1

Views

Author

Carmine Suriano, May 04 2010

Keywords

Comments

The probability that fib(n) contains no 0's decreases to zero as n goes to infinity. Its maximum value seems to be F(184) having 39 digits, including no zeros.

Examples

			a(7)=13 since fib(7) does not contain the digit 0.
		

Crossrefs

Formula

a(n) = A000045(A076564(n)). [From R. J. Mathar, Oct 18 2010]

A246558 Product of the digits of the n-th Fibonacci number.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 3, 2, 12, 25, 72, 16, 18, 147, 0, 504, 315, 320, 32, 1260, 0, 49, 3360, 3456, 0, 162, 1728, 168, 720, 0, 7776, 0, 33600, 0, 30240, 0, 15680, 0, 311040, 0, 0, 326592, 435456, 0, 0, 0, 0, 0, 0, 0, 0, 0, 102060, 3951360, 24883200, 1411200
Offset: 0

Views

Author

Indrani Das, Nov 12 2014

Keywords

Comments

a(n) > 0 iff n in A076564.
Probably, the last nonzero term is a(184). - Giovanni Resta, Jul 14 2015

Examples

			Fibonacci(7) = 13, thus a(7) = 1*3 = 3.
		

Crossrefs

Programs

  • Haskell
    a246558 = a007954 . a000045 -- Reinhard Zumkeller, Nov 17 2014
    
  • Magma
    [0] cat [&*Intseq(Fibonacci(n)): n in [1..100]]; // Vincenzo Librandi, Jan 04 2020
    
  • Mathematica
    Array[Times@@IntegerDigits@Fibonacci[#]&, 100, 0] (* Vincenzo Librandi, Jan 04 2020 *)
  • PARI
    a(n) = if (n, vecprod(digits(fibonacci(n))), 0); \\ Michel Marcus, Feb 11 2025

Formula

a(n) = A007954(A000045(n)). - Reinhard Zumkeller, Nov 17 2014

A373049 Integers k such that the product of the nonzero digits of the k-th Fibonacci number (A000045) is a perfect power.

Original entry on oeis.org

0, 1, 2, 6, 10, 12, 19, 21, 22, 27, 31, 46, 49, 50, 73, 79, 85, 102, 108, 116, 117, 160, 161, 179, 181, 237, 247, 250, 257, 281, 285, 302, 309, 351, 354, 359, 373, 376, 377, 380, 415, 419, 434, 449, 470, 479, 497, 498, 515, 521, 543, 565, 569, 584, 590, 599, 602, 609, 615, 665, 696
Offset: 1

Views

Author

Gonzalo Martínez, May 20 2024

Keywords

Comments

For most of the terms in this list, the product of their nonzero digits is a perfect square.
Conjecture: this sequence has infinitely many terms. Since the product of the nonzero digits of Fibonacci(k) is of the form 2^a * 3^b * 5^c * 7^d, a sufficient condition for Fibonacci(k) to belong to the sequence is that a, b, c and d are all even.

Examples

			21 is a term, because Fibonacci(21) = 10946 and the product of its nonzero digits is 1*9*4*6 = 6^3.
46 is a term, because Fibonacci(46) = 1836311903 and the product of its nonzero digits is 1*8*3*6*3*1*1*9*3 = 108^2.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local L,t,q2,q3,q5,q7;
      L:=convert(combinat:-fibonacci(n),base,10);
      q2:= 0: q3:= 0: q5:= 0: q7:= 0:
      for t in L do
        if t = 2 then q2:= q2+1
        elif t = 3 then q3:= q3+1
        elif t = 4 then q2:= q2+2
        elif t = 5 then q5:= q5+1
        elif t = 6 then q2:= q2+1; q3:= q3+1
        elif t = 7 then q7:= q7+1
        elif t = 8 then q2:= q2+3
        elif t = 9 then q3:= q3+2
        fi
      od;
      igcd(q2,q3,q5,q7) > 1
    end proc:
    filter(0):= true: filter(1):= true: filter(2):= true:
    select(filter, [$0..1000]); # Robert Israel, May 26 2025
  • Mathematica
    powQ[n_] := n == 1 || GCD @@ FactorInteger[n][[;; , 2]] > 1; Select[Range[0, 700], powQ[Times @@ Select[IntegerDigits[Fibonacci[#]], #1 > 0 &]] &] (* Amiram Eldar, May 25 2024 *)
  • PARI
    isok(k) = my(x=vecprod(select(x->(x>0), digits(fibonacci(k))))); (x==1) || ispower(x); \\ Michel Marcus, May 20 2024

Extensions

More terms from Michel Marcus, May 20 2024

A373116 Fibonacci numbers whose digits product is a positive perfect power (A001597).

Original entry on oeis.org

1, 8, 55, 144, 4181, 17711, 196418, 1346269, 259695496911122585
Offset: 1

Views

Author

Gonzalo Martínez, May 25 2024

Keywords

Comments

Since the product of the digits of Fibonacci(k) is required to be positive, Fibonacci(k) does not have zero as a digit. For this reason this list is probably finite, since it is conjectured that there are only finitely many Fibonacci numbers that do not contain the digit zero (see A076564). If the conjecture is true, the largest number possessing the property would be Fibonacci(85) = 259695496911122585 whose digit product is 194400^2.
Unlike A373049, here the product uses all the digits of Fibonacci(k).

Examples

			196418 is a term, because Fibonacci(27) = 196418 and the product of its digits is 1*9*6*4*1*8 = 12^3.
		

Crossrefs

Programs

  • Mathematica
    powQ[n_] := n == 1 || GCD @@ FactorInteger[n][[;; , 2]] > 1; Select[Fibonacci[Range[2, 100]], powQ[Times @@ IntegerDigits[#]] &] (* Amiram Eldar, May 25 2024 *)

A130631 Multiplicative persistence of Fibonacci numbers.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 3, 2, 2, 4, 1, 2, 3, 2, 2, 2, 1, 4, 2, 3, 1, 3, 3, 4, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Keywords

Comments

From the 184th terms on all the Fibonacci numbers have some digits equal to zero (see A076564), thus their persistence is equal to 1.

Examples

			3524578 -> 3*5*2*4*5*7*8 = 33600 -> 3*3*6*0*0 = 0 -> persistence = 2.
		

Crossrefs

Programs

  • Maple
    P:=proc(n)local f0,f1,f2,i,k,w,ok,cont; f0:=0; f1:=1; print(0); print(0); for i from 0 by 1 to n do f2:=f1+f0; f0:=f1; f1:=f2; w:=1; ok:=1; k:=f2; if k<10 then print(0); else cont:=1; while ok=1 do while k>0 do w:=w*(k-(trunc(k/10)*10)); k:=trunc(k/10); od; if w<10 then ok:=0; print(cont); else cont:=cont+1; k:=w; w:=1; fi; od; fi; od; end: P(100);
  • Mathematica
    Table[Length[NestWhileList[Times@@IntegerDigits[#]&, Fibonacci[n], #>=10&]], {n, 0, 102}]-1 (* James C. McMahon, Feb 11 2025 *)

Formula

a(n) = A031346(A000045(n)). - Michel Marcus, Feb 11 2025
Showing 1-5 of 5 results.