cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A076654 Smallest natural number not a multiple of 10, not occurring earlier and starting with the end of the previous term.

Original entry on oeis.org

1, 11, 12, 2, 21, 13, 3, 31, 14, 4, 41, 15, 5, 51, 16, 6, 61, 17, 7, 71, 18, 8, 81, 19, 9, 91, 101, 102, 22, 23, 32, 24, 42, 25, 52, 26, 62, 27, 72, 28, 82, 29, 92, 201, 103, 33, 34, 43, 35, 53, 36, 63, 37, 73, 38, 83, 39, 93, 301, 104, 44, 45, 54, 46, 64, 47, 74, 48, 84, 49, 94
Offset: 1

Views

Author

Amarnath Murthy, Oct 28 2002

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List (delete)
    a076654 n = a076654_list !! (n-1)
    a076654_list = f a067251_list 1 where
      f xs z = g xs where
        g (y:ys) = if a000030 y == mod z 10 then y : f (delete y xs) y else g ys
    -- Reinhard Zumkeller, Aug 15 2015
  • Maple
    startsWith := proc(n,dig) local nshft ; nshft := n ; while nshft >= 10 do nshft := floor(nshft/10) ; od ; if dig = nshft then RETURN(true) ; else RETURN(false) ; fi ; end: A076654 := proc(nmax) local candid,a; a := [1] ; while nops(a) < nmax do candid := 2 ; while not startsWith(candid,op(-1,a) mod 10) or candid mod 10 = 0 or candid in a do candid := candid+1 ; od ; a := [op(a),candid] ; od ; RETURN(a) ; end: a := A076654(200) : for n from 1 to nops(a) do printf("%d,",op(n,a)) ; od ; # R. J. Mathar, Nov 12 2006

Formula

A000030(a(n+1)) = A010879(a(n)). - Reinhard Zumkeller, Aug 15 2015

Extensions

More terms from R. J. Mathar, Nov 12 2006

A155985 a(1)=1, then a(n) is the smallest square not occurring earlier, not ending with zero and starting with the last digit of a(n-1).

Original entry on oeis.org

1, 16, 64, 4, 49, 9, 961, 121, 144, 441, 169, 9025, 529, 9216, 625, 576, 676, 6084, 484, 4096, 6241, 196, 6561, 1024, 4225, 5041, 1089, 9409, 9604, 4356, 6724, 4489, 9801, 1156, 6889, 90601, 1225, 5184, 4624, 4761, 1296, 60025, 5329, 91204, 40401, 1369
Offset: 1

Views

Author

Zak Seidov, Feb 01 2009

Keywords

Crossrefs

Cf. A076653 (similar, with primes), A155986.

Programs

  • PARI
    nxt(va, d) = {my(k=1); while ((digits(k^2)[1]!=d) || !(k%10) || #select(x->(x==k^2), va), k++); k^2;}
    lista(nn) = {my(va = vector(nn)); va[1] = 1; for (n=2, nn, va[n] = nxt(va, Vecrev(digits(va[n-1]))[1]);); va;} \\ Michel Marcus, Sep 04 2020
    
  • PARI
    \\ See Corneth link. David A. Corneth, Sep 05 2020

Extensions

Name edited by Michel Marcus, Sep 04 2020

A076652 Smallest composite number not divisible by 10, not occurring earlier and starting with the end of the previous term.

Original entry on oeis.org

4, 42, 21, 12, 22, 24, 44, 45, 51, 14, 46, 6, 62, 25, 52, 26, 63, 32, 27, 72, 28, 8, 81, 15, 54, 48, 82, 201, 16, 64, 49, 9, 91, 18, 84, 402, 202, 203, 33, 34, 403, 35, 55, 56, 65, 57, 74, 404, 405, 58, 85, 501, 102, 204, 406, 66, 68, 86, 69, 92, 205, 502, 206, 602, 207, 75
Offset: 1

Views

Author

Amarnath Murthy, Oct 28 2002

Keywords

Crossrefs

Extensions

More terms from Matthew Ohlsen (mjo178(AT)psu.edu), Feb 26 2006
More terms from Max Alekseyev, Sep 14 2009

A155986 a(1), then a(n) = smallest cube not occurring earlier, not ending with zero and starting with the last digit of a(n-1).

Original entry on oeis.org

1, 125, 512, 27, 729, 9261, 1331, 1728, 8, 85184, 4096, 64, 4913, 343, 3375, 5832, 216, 6859, 91125, 50653, 32768, 804357, 74088, 830584, 42875, 54872, 2197, 79507, 704969, 97336, 68921, 10648, 857375, 59319, 912673, 35937, 753571, 12167, 778688
Offset: 1

Views

Author

Zak Seidov, Feb 01 2009

Keywords

Crossrefs

A262254 a(1) = 11; for n>1, a(n) is the smallest prime that starts with the least significant digit of the previous term and has not occurred earlier.

Original entry on oeis.org

11, 13, 31, 17, 71, 19, 97, 73, 37, 79, 907, 701, 101, 103, 307, 709, 911, 107, 719, 919, 929, 937, 727, 733, 311, 109, 941, 113, 313, 317, 739, 947, 743, 331, 127, 751, 131, 137, 757, 761, 139, 953, 337, 769, 967, 773, 347, 787, 797, 7001, 149, 971, 151, 157, 7013, 349, 977, 7019, 983
Offset: 1

Views

Author

Maghraoui Abdelkader, Sep 16 2015

Keywords

Comments

This sequence is different from A089755, as this one does not include single-digit primes.
This sequence is different from A089755, for which a(n+1) uses all the digit of a(n) except the most-significant digit of a(n).
In this sequence, a(n+1) uses only the least-significant digit of a(n).

Examples

			a(3) = 31 where the most significant digit of 31 is 3, which is the least significant digit of a(2) = 13.
		

Crossrefs

Programs

  • Mathematica
    f[s_List] := Block[{lsd = Mod[s[[-1]], 10], p = 3}, While[ IntegerDigits[p][[1]] != lsd || MemberQ[s, p], p = NextPrime@ p]; Append[s, p]]; s = {11}; s = Nest[f, s, 70] (* Robert G. Wilson v, Sep 16 2015 *)
  • PARI
    msd(n)=(n\10^(#Str(n)-1)); l1=1;l3=1;l7=1;l9=1; q=1; lsd(n)=n%10;
    t1 = vector(200); i=1;forprime(n=11,10000, if( digits(n)[1]==1,t1[i]=n; i=i+1 ; )) ;
    t3 = vector(130); i=1;forprime(n=31,3900 ,  if( digits(n)[1]==3,t3[i]=n; i=i+1 ; ));
    t7 = vector(130); i=1;forprime(n=71,70000, if( digits(n)[1]==7,t7[i]=n; i=i+1 ; )) ;
    t9 = vector(130); i=1;forprime(n=97,90000, if( digits(n)[1]==9,t9[i]=n; i=i+1 ; )) ;lsd(n)=n%10;
    t = vector(200);
    findnextnumber(m) =
    {if(lsd(m)==1, l1=t1[i1] ; i1=i1+1;return(l1);); if(lsd(m)==3, l3=t3[i3];  i3=i3+1 ; return(l3););
    if(lsd(m)==7, l7=t7[i7] ; i7=i7+1;return(l7);); if(lsd(m)==9, l9=t9[i9];  i9=i9+1;return(l9);); }
    i1=1;  i3=1;  i7=1;  i9=1;  j=1;s=11;   for(n=1,200,   p=findnextnumber(s) ; t[j]=p; s=p;j++);for(i=1,200, print1(t[i],", ") )

A262702 Lexicographically earliest sequence of distinct prime numbers such that the decimal representations of two consecutive terms overlap.

Original entry on oeis.org

2, 23, 3, 13, 11, 17, 7, 37, 43, 31, 19, 41, 101, 61, 103, 71, 47, 73, 67, 79, 97, 29, 229, 293, 307, 53, 5, 59, 359, 83, 283, 311, 107, 131, 109, 151, 113, 137, 181, 127, 191, 139, 211, 149, 241, 157, 251, 163, 271, 167, 281, 173, 313, 193, 317, 179, 331, 197
Offset: 1

Views

Author

Paul Tek, Sep 27 2015

Keywords

Comments

Two terms are said to overlap:
- if the decimal representation of one term is contained in the decimal representation of the other term (for example, 23 and 3 overlap),
- or if, for some k>0, the first k decimal digits (without leading zero) of one term correspond to the k last decimal digits of the other term (for example, 317 and 179 overlap).
This is a variation of A262323 around the prime numbers.
Is this a permutation of the prime numbers?

Examples

			The first terms of the sequence are:
+----+--------+
| n  | a(n)   |
+----+--------+
|  1 |  2     |
|  2 |  23    |
|  3 |   3    |
|  4 |  13    |
|  5 | 11     |
|  6 |  17    |
|  7 |   7    |
|  8 |  37    |
|  9 | 43     |
| 10 |  31    |
| 11 |   19   |
| 12 |  41    |
| 13 |   101  |
| 14 |  61    |
| 15 |   103  |
| 16 |  71    |
| 17 | 47     |
| 18 |  73    |
| 19 | 67     |
| 20 |  79    |
| 21 |   97   |
| 22 |  29    |
| 23 | 229    |
| 24 |  293   |
| 25 |    307 |
+----+--------+
		

Crossrefs

Programs

  • Perl
    See Links section.
Showing 1-6 of 6 results.