A076664 a(n) = Sum_{k=1..n} antisigma(k), where antisigma(i) = sum of the nondivisors of i that are between 1 and i.
0, 0, 2, 5, 14, 23, 43, 64, 96, 133, 187, 237, 314, 395, 491, 596, 731, 863, 1033, 1201, 1400, 1617, 1869, 2109, 2403, 2712, 3050, 3400, 3805, 4198, 4662, 5127, 5640, 6181, 6763, 7338, 8003, 8684, 9408, 10138, 10957, 11764, 12666, 13572, 14529, 15538
Offset: 1
Examples
a(5) = antisigma(1) + ... + antisigma(5) = 0 + 0 + 2 + 3 + 9 = 14.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
l = {}; s = 0; Do[s = s + (n (n + 1) / 2) - DivisorSigma[1, n]; l = Append[l, s], {n, 1, 100}]; l Accumulate[Table[Total[Complement[Range[n],Divisors[n]]],{n,50}]] (* Harvey P. Dale, May 19 2014 *)
-
PARI
a(n) = sum(k=1, n, k*(k+1)/2-sigma(k)); \\ Michel Marcus, Sep 18 2017
-
Python
from math import isqrt def A076664(n): return n*(n+1)*(n+2)//3+(s:=isqrt(n))**2*(s+1)-sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))>>1 # Chai Wah Wu, Oct 22 2023
Formula
a(n) = Sum_{k=1..n} Sum_{i=1..k-1} (n-k-i+1) mod (n-i+1). - Wesley Ivan Hurt, Sep 13 2017
G.f.: x/(1 - x)^4 - (1/(1 - x))*Sum_{k>=1} k*x^k/(1 - x^k). - Ilya Gutkovskiy, Sep 18 2017
Comments