cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076664 a(n) = Sum_{k=1..n} antisigma(k), where antisigma(i) = sum of the nondivisors of i that are between 1 and i.

Original entry on oeis.org

0, 0, 2, 5, 14, 23, 43, 64, 96, 133, 187, 237, 314, 395, 491, 596, 731, 863, 1033, 1201, 1400, 1617, 1869, 2109, 2403, 2712, 3050, 3400, 3805, 4198, 4662, 5127, 5640, 6181, 6763, 7338, 8003, 8684, 9408, 10138, 10957, 11764, 12666, 13572, 14529, 15538
Offset: 1

Views

Author

Joseph L. Pe, Oct 24 2002

Keywords

Comments

Sum of all proper nondivisors of all positive integers <= n. - Omar E. Pol, Feb 11 2014

Examples

			a(5) = antisigma(1) + ... + antisigma(5) = 0 + 0 + 2 + 3 + 9 = 14.
		

Crossrefs

Programs

  • Mathematica
    l = {}; s = 0; Do[s = s + (n (n + 1) / 2) - DivisorSigma[1, n]; l = Append[l, s], {n, 1, 100}]; l
    Accumulate[Table[Total[Complement[Range[n],Divisors[n]]],{n,50}]] (* Harvey P. Dale, May 19 2014 *)
  • PARI
    a(n) = sum(k=1, n, k*(k+1)/2-sigma(k)); \\ Michel Marcus, Sep 18 2017
    
  • Python
    from math import isqrt
    def A076664(n): return n*(n+1)*(n+2)//3+(s:=isqrt(n))**2*(s+1)-sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))>>1 # Chai Wah Wu, Oct 22 2023

Formula

a(n) = A000292(n) - A024916(n), n >= 1. Omar E. Pol, Feb 11 2014
a(n) = Sum_{k=1..n} Sum_{i=1..k-1} (n-k-i+1) mod (n-i+1). - Wesley Ivan Hurt, Sep 13 2017
G.f.: x/(1 - x)^4 - (1/(1 - x))*Sum_{k>=1} k*x^k/(1 - x^k). - Ilya Gutkovskiy, Sep 18 2017