cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A076752 a(n) = Sum_{d is a square divisor of n} n/d.

Original entry on oeis.org

1, 2, 3, 5, 5, 6, 7, 10, 10, 10, 11, 15, 13, 14, 15, 21, 17, 20, 19, 25, 21, 22, 23, 30, 26, 26, 30, 35, 29, 30, 31, 42, 33, 34, 35, 50, 37, 38, 39, 50, 41, 42, 43, 55, 50, 46, 47, 63, 50, 52, 51, 65, 53, 60, 55, 70, 57, 58, 59, 75, 61, 62, 70, 85, 65, 66, 67, 85, 69, 70, 71
Offset: 1

Views

Author

Vladeta Jovovic, Nov 12 2002

Keywords

Comments

The Mobius transform of this sequence appears to generate the sequence of absolute terms of A061020. - R. J. Mathar, Feb 08 2011

Examples

			a(8) = 10 as the square divisors of 8 are 1 and 4, and 8/1 + 8/4 = 10. - _David A. Corneth_, Nov 03 2017
		

Crossrefs

Programs

  • Mathematica
    Table[Total[n/Select[Divisors[n], IntegerQ@Sqrt@# &]], {n, 71}] (* Ivan Neretin, Sep 20 2017 *)
    Table[DivisorSum[n, n/# &, IntegerQ@ Sqrt@ # &], {n, 71}] (* Michael De Vlieger, Nov 03 2017 *)
    f[p_, e_] := p^(k = If[EvenQ[e], 0, 1])*(p^(e + 2 - k) - 1)/(p^2 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 01 2020 *)
  • PARI
    a(n,f=factor(n))=prod(i=1,#f~, if(f[i,2]%2, f[i,1]*(f[i,1]^(f[i,2]+1)-1), (f[i,1]^(f[i,2]+2)-1))/(f[i,1]^2-1)) \\ Charles R Greathouse IV, Sep 20 2017
    
  • PARI
    a(n) = sumdiv(n, d, (n/d)*issquare(d)); \\ Michel Marcus, Nov 02 2017

Formula

Multiplicative with a(p^e) = (p^(e+2)-1)/(p^2-1) for even e and a(p^e) = p*(p^(e+1)-1)/(p^2-1) for odd e.
a(p ^ (m + 1)) = p * a(p^m) for even m and a(p ^ (m + 1)) = p * a(p^m) + 1 for odd m. - David A. Corneth, Nov 03 2017
a(n) = (lambda * sigma)(n) = (A008836 * A000203)(n), where * is the Dirichlet convolution. - Yuyang Zhao, Nov 02 2017
From Vaclav Kotesovec, Feb 04 2019: (Start)
Dirichlet g.f.: zeta(2*s)*zeta(s-1).
Sum_{k=1..n} a(k) ~ Pi^4 * n^2 / 180. (End)
G.f.: Sum_{k>=1} x^(k^2) / (1 - x^(k^2))^2. - Ilya Gutkovskiy, Aug 19 2021