A076791 Triangle a(n,k) giving number of binary sequences of length n containing k subsequences 00.
1, 2, 3, 1, 5, 2, 1, 8, 5, 2, 1, 13, 10, 6, 2, 1, 21, 20, 13, 7, 2, 1, 34, 38, 29, 16, 8, 2, 1, 55, 71, 60, 39, 19, 9, 2, 1, 89, 130, 122, 86, 50, 22, 10, 2, 1, 144, 235, 241, 187, 116, 62, 25, 11, 2, 1, 233, 420, 468, 392, 267, 150, 75, 28, 12, 2, 1, 377, 744, 894, 806, 588, 363, 188, 89, 31, 13, 2, 1
Offset: 0
Examples
a(5,2) = 6 because the binary sequences of length 5 with 2 subsequences 00 are 10001, 11000, 01000, 00100, 00010, 00011. Triangle begins 1; 2; 3, 1; 5, 2, 1; 8, 5, 2, 1; 13, 10, 6, 2, 1; ...
Links
- Alois P. Heinz, Rows n = 0..150, flattened
- M. Bukata, R. Kulwicki, N. Lewandowski, L. Pudwell, J. Roth, and T. Wheeland, Distributions of Statistics over Pattern-Avoiding Permutations, arXiv preprint arXiv:1812.07112 [math.CO], 2018.
- L. Carlitz and R. Scoville, Zero-one sequences and Fibonacci numbers, Fibonacci Quarterly, 15 (1977), 246-254.
- Toufik Mansour and Armend Sh. Shabani, Bargraphs in bargraphs, Turkish Journal of Mathematics (2018) Vol. 42, Issue 5, 2763-2773.
- Paul M. Rakotomamonjy, Sandrataniaina R. Andriantsoa, and Arthur Randrianarivony, Crossings over permutations avoiding some pairs of three length-patterns, arXiv:1910.13809 [math.CO], 2019.
Programs
-
Maple
b:= proc(n, l) option remember; `if`(n=0, 1, expand(b(n-1, 1)*x^l)+b(n-1, 0)) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)): seq(T(n), n=0..14); # Alois P. Heinz, Sep 17 2019
-
Mathematica
f[list_] := Select[list, #>0&]; nn=10; a=1/(1-y x); b= x/(1-y x) +1; c=1/(1-x); Map[f, CoefficientList[Series[c b/(1-(a x^2 c)), {x,0,nn}], {x,y}]]//Flatten (* Geoffrey Critzer, Mar 05 2012 *) u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + v[n - 1, x]; v[n_, x_] := u[n - 1, x] + v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A053538 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A076791 *) (* Clark Kimberling, Mar 08 2012 *) T[ n_, k_] := If[n<2, (n+1)*Boole[n > -1 && k == 0], T[n, k] = T[n-1, k] + T[n-1, k-1] + T[n-2, k] - T[n-2, k-1] ]; (* Michael Somos, Sep 21 2024 *)
-
PARI
{T(n, k) = if(n<2, (n+1)*(n > -1 && k == 0), T(n-1, k) + T(n-1, k-1) + T(n-2, k) - T(n-2, k-1) )}; /* Michael Somos, Sep 21 2024 */
Formula
Recurrence: a(n, k) = (a(n-1, k) + a(n-2, k)) + (a(n-3, k-1) + a(n-4, k-2) + ... + a(n-k-2, 0)).
Special values: a(n, 0) = Fibonacci(n+1); a(n, n-1) = 1 for n >= 2; a(n, n-2) = 2 for n >= 3; a(n, n-3) = n + 1 for n >= 4, etc.
a(n, n-4) = 3*n - 5 for n >= 5, a(n, n-5) = (n^2 + 5*n - 26)/2 for n >= 6, a(n, n-6) = 2*n^2 - 8*n - 4, for n >= 7 etc.
Recurrence relation: a(n+1, k) = a(n, k) + a(n-1, k) + a(n, k-1) - a(n-1, k-1) for k >= 1, n >= 1.
Generating function: a(n, k) is coefficient of x^n in ((x^(k + 1))*((1 - x)^(k - 1)))/((1 - x - x^2)^(k + 1)) for k >= 1. - E. Keith Lloyd (ekl(AT)soton.ac.uk), Nov 29 2004
G.f.: (1 + (1 - t)*x)/(1 - (1 + t)*x - (1 - t)*x^2). [Carlitz-Scoville] - Emeric Deutsch, May 19 2006
A076791 is jointly generated with A053538 as an array of coefficients of polynomials u(n,x): initially, u(1,x) = v(1,x) = 1; for n > 1, u(n,x) = x*u(n-1,x) + v(n-1)*x and v(n,x) = u(n-1,x) + v(n-1,x). See the Mathematica section. - Clark Kimberling, Mar 08 2012
Extensions
More terms from E. Keith Lloyd (ekl(AT)soton.ac.uk), Nov 29 2004
Comments