cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A083371 Primes p such that q-p >= 8, where q is the next prime after p.

Original entry on oeis.org

89, 113, 139, 181, 199, 211, 241, 283, 293, 317, 337, 359, 389, 401, 409, 421, 449, 467, 479, 491, 509, 523, 547, 577, 619, 631, 661, 683, 691, 701, 709, 719, 743, 761, 773, 787, 797, 811, 829, 839, 863, 887, 911, 919, 929, 953, 983, 997, 1021, 1039, 1051, 1069
Offset: 1

Views

Author

Benoit Cloitre, Jun 04 2003

Keywords

Comments

The original definition by Cloitre was: [Start from any initial value F(1) >= 2 and define F(n) as the largest prime factor of F(1)+F(2)+F(3)+...+F(n-1). The sequence contains the primes satisfying F(2*p)=p supposed F(1)=7. Conjecture: F(n)= n/2+O(log n) and the sequence is infinite.] Don Reble showed Jan 22 2022 that these are the same primes p followed by a prime gap of q-p >=8, where q is the next prime after p: [
Let X' be the first prime after X, 'X be the first prime before X.
The F sequence starting at "7" has 11 "7"s, then 6 "11"s, 6 "13"s, 6 "17"s, 6 "19"s, 10 "23"s, ...
One easily sees that the F sequence starting at prime S has S' instances of S; then for each prime P after S, it has (P'-'P) instances of P. (A076973 is the F sequence starting at "2".)
The primes from S to P occupy the first [S' + (S''-S) + (S'''-S') + ... + (P' - 'P)] terms of F.
That sum telescopes to P'+P-S, and so
F(P'+P-S) = P; F(P'+P-S+1) = P';
F(P+'P-S) = 'P; F(P+'P-S+1) = P.
If F(X) =P, then P+'P-S < X <= P'+P-S.
If F(2P)=P, then P+'P-S < 2P <= P'+P-S
'P < P+S <= P'
S <= P'-P
So this sequence has the primes P for which P'-P >= 7; and since P'-P is even (both primes are odd), P'-P >= 8. q.e.d.]

Crossrefs

Cf. A076973.

Programs

  • Maple
    d:=8; M:=1000; t0:=[]; for n from 1 to M do p:=ithprime(n); if nextprime(p) - p >= d then t0:=[op(t0),p]; fi; od: t0; # N. J. A. Sloane, Dec 19 2006
    f := proc(n) option remember: if(n=1)then return 7: fi: return max(op(numtheory[factorset](add(f(i),i=1..n-1)))): end: seq(`if`(f(2*ithprime(n))=ithprime(n),ithprime(n),NULL),n=1..200); # Nathaniel Johnston, Jun 25 2011, via Cloitre's F
  • Mathematica
    Transpose[Select[Partition[Prime[Range[200]],2,1],Last[#]-First[#]>7&]][[1]] (* Harvey P. Dale, Jan 28 2013 *)

Formula

A000040 MINUS A124590. - R. J. Mathar, Jan 23 2022
A031926 UNION A031928 UNION A031930 UNION A031932 UNION ... - R. J. Mathar, Jan 23 2022

Extensions

Terms after a(20) from Nathaniel Johnston, Jun 26 2011
Merged with A124583 in response to Reble's seqfan post. - R. J. Mathar, Jan 24 2022

A036441 a(n+1) = next number having largest prime dividing a(n) as a factor, with a(1) = 2.

Original entry on oeis.org

2, 4, 6, 9, 12, 15, 20, 25, 30, 35, 42, 49, 56, 63, 70, 77, 88, 99, 110, 121, 132, 143, 156, 169, 182, 195, 208, 221, 238, 255, 272, 289, 306, 323, 342, 361, 380, 399, 418, 437, 460, 483, 506, 529, 552, 575, 598, 621, 644, 667, 696, 725, 754, 783, 812, 841, 870
Offset: 1

Views

Author

Frederick Magata (frederick.magata(AT)uni-muenster.de)

Keywords

Comments

a(n) satisfies the following inequality: (1/4)*(n^2 + 3*n + 1) <= a(n) <= (1/4)*(n+2)^2. [Corrected by M. F. Hasler, Apr 08 2015]
The present sequence is the special case a(n) = a(2,n) with a more general a(m, n) := a(m, n-1) + gpf(a(m, n-1)), a(m, 1) := m, where gpf(x) := "greatest prime factor of x" = A006530(x). Also a(a(r,k), n) = a(r,n+k-1), for all n,k in N\{0} and all r in N\{0,1}; a(prime(k), n) = a(prime(i), n + prime(k) - prime(i)), for all k,i,n in N\{0}, with k >= i, n >= prime(k-1) and with prime(x) := x-th prime.
Essentially the same as A076271 and A180107, cf. formula.

Examples

			a(2,2) = 4 because 2 + gpf(2) = 2 + 2 = 4;
a(2,3) = 6 because 4 + gpf(4) = 4 + 2 = 6.
		

Crossrefs

Cf. A006530. See A076271 and A180107 for other versions.
Cf. A123581.
Partial sums of A076973.

Programs

  • Haskell
    a036441 n = a036441_list !! (n-1)
    a036441_list = tail a076271_list
    -- Reinhard Zumkeller, Nov 08 2015, Nov 14 2011
    
  • Mathematica
    f[n_]:=Last[First/@FactorInteger[n]];Join[{a=2},Table[a+=f[a],{n,2,100}]] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2011*)
    NestList[#+FactorInteger[#][[-1,1]]&,2,60] (* Harvey P. Dale, Dec 02 2012 *)
  • PARI
    a(n)=(n+2-if(n\2+1<(p=nextprime(n\2+1))&&n+1M. F. Hasler, Apr 08 2015

Formula

a(n) = p(m)*(n+2-p(m)), where p(k) is the k-th prime and m is the smallest index such that n+2 <= p(m) + p(m+1). - Max Alekseyev, Oct 21 2008
a(n) = A076271(n+1) = A180107(n+2). - M. F. Hasler, Apr 08 2015
a(n+1) = A070229(a(n)). - Reinhard Zumkeller, Nov 07 2015

Extensions

Better description from Reinhard Zumkeller, Feb 04 2002
Edited by M. F. Hasler, Apr 08 2015

A083370 Primes satisfying f(2p)=p when f(1)=5 (see comment).

Original entry on oeis.org

23, 31, 47, 53, 61, 73, 83, 89, 113, 131, 139, 151, 157, 167, 173, 181, 199, 211, 233, 241, 251, 257, 263, 271, 283, 293, 317, 331, 337, 353, 359, 367, 373, 383, 389, 401, 409, 421, 433, 443, 449, 467, 479, 491
Offset: 1

Views

Author

Benoit Cloitre, Jun 04 2003

Keywords

Comments

Conjecture: start from any initial value f(1) >= 2 and define f(n) to be the largest prime factor of f(1)+f(2)+...+f(n-1); then f(n) = n/2 + O(log(n)) and there are infinitely many primes p such that f(2p)=p.
Coincides with A124582 in the first 154 terms: a(154) = A124582(154) = 1723, but a(155,156,...) = 1777, 1783, 1801, 2017, 3251, ..., whereas A124582(155,156,...) = 1733, 1741, 1747, ... - R. J. Mathar, Feb 08 2007

Crossrefs

Cf. A076973.

Programs

  • Maple
    A006530 := proc(n) if n = 1 then RETURN(1) ; else RETURN(op(1,op(-1,op(2,ifactors(n))))) ; fi ; end: f := proc(n) option remember ; if n = 1 then RETURN(5) ; else A006530(add(f(i),i=1..n-1)) ; fi ; end: isA083370 := proc(p) if isprime(p) then if p = f(2*p) then true ; else false ; fi ; else false ; fi ; end: n := 1 : i := 1 : while n <= 1000 do p := ithprime(i) ; if isA083370(p) then printf("%d %d ",n,p) ; n := n+ 1 ; fi ; i := i+1 ; end: # R. J. Mathar, Feb 08 2007
  • Mathematica
    f[n_] := f[n] = If[n==1, 5, FactorInteger[Total[f /@ Range[n-1]]][[-1, 1]]];
    Reap[For[p=2, p<500, p = NextPrime[p], If[f[2p] == p, Sow[p]]]][[2, 1]] (* Jean-François Alcover, Oct 31 2019 *)
Showing 1-3 of 3 results.