A085901 Duplicate of A077224.
1, 2, 4, 9, 13, 29, 33, 101, 105, 109, 157, 177, 253, 289, 301, 353, 409, 429, 465, 501
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
17 belongs to this sequence as 17 + 1, 17 + 3, 17 + 15 all are divisible by some square.
a[0] = 1; a[n_] := a[n] = Module[{t = Array[a, n, 0], k = a[n - 1] + 1}, While[! SquareFreeQ[k] || AnyTrue[t, SquareFreeQ[k + #] &], k++]; k]; Array[a, 20, 0] (* Amiram Eldar, Aug 21 2023 *)
v=vector(60); v[1]=1; print1("1,");for(n=2,60, for(k=1,10^15,if(issquarefree(k),s=0;for(l=1,n-1,if(issquarefree(k+v[l]),break);s=s+1)); if(s==n-1,print1(k",");v[n]=k;break)))
a[0] = 1; a[n_] := a[n] = Module[{t = Array[a, n, 0], k = a[n - 1] + 1}, While[AnyTrue[t, SquareFreeQ[k + #] &], k++]; k]; Array[a, 20, 0] (* Amiram Eldar, Aug 21 2023 *)
v=vector(60); v[1]=1; print1("1, "); for(n=2, 60, for(k=v[n-1]+1, 10^15, s=0; for(l=1, n-1, if(issquarefree(k+v[l]), break); s=s+1); if(s==n-1, print1(k", "); v[n]=k; break)))
a[0] = 2; a[n_] := a[n] = Module[{t = Array[a, n, 0], k = a[n - 1] + 1}, While[! SquareFreeQ[k] || AnyTrue[t, ! SquareFreeQ[k + #] &], k++]; k]; Array[a, 100, 0] (* Amiram Eldar, Aug 21 2023 *)
sumsSqFree[t_, p_] := And @@ SquareFreeQ /@ (t + p); t = {2}; Do[p = NextPrime[t[[-1]]]; While[! sumsSqFree[t, p], p = NextPrime[p]]; AppendTo[t, p], {50}]; t (* T. D. Noe, Jul 30 2012 *)
Comments