cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077285 Number of partitions of n with designated summands.

Original entry on oeis.org

1, 1, 3, 5, 10, 15, 28, 41, 69, 102, 160, 231, 352, 498, 732, 1027, 1470, 2031, 2856, 3896, 5382, 7272, 9896, 13233, 17800, 23579, 31362, 41219, 54288, 70791, 92456, 119698, 155097, 199512, 256664, 328134, 419436, 533162, 677412, 856573, 1082284, 1361679
Offset: 0

Views

Author

Jorn B. Olsson (olsson(AT)math.ku.dk), Nov 26 2003

Keywords

Comments

Sum of products of multiplicities of parts in all partitions of n. The partitions of 4 are 4, 1+3, 2+2, 2+1+1, 1+1+1+1, the corresponding products are 1,1,2,2,4 and their sum is a(4) = 10. - Vladeta Jovovic, Feb 16 2005

Examples

			a(3)=5 because the partitions of 3 with designated summands are 3', 2'1', 1'11, 11'1, 111'.
1 + x + 3*x^2 + 5*x^3 + 10*x^4 + 15*x^5 + 28*x^6 + 41*x^7 + 69*x^8 + 102*x^9 + ...
		

Crossrefs

Cf. A102186 (partitions into odd parts with designated summands).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1) +add(b(n-i*j, i-1)*j, j=1..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Feb 26 2013
  • Mathematica
    max = 50; f = Product[(1-x^i+x^(2*i))/(1-x^i)^2, {i, 1, max}]; s = Series[f, {x, 0, max}] // Normal; a[n_] := Coefficient[s, x, n]; Table[a[n], {n, 0, max}] (* Jean-François Alcover, May 06 2014, after Vladeta Jovovic *)
    nmax=100; CoefficientList[Series[Product[(1+x^(3*k)) / ((1-x^k) * (1-x^(2*k))), {k,1,nmax}], {x,0,nmax}], x] (* Vaclav Kotesovec, Nov 28 2015 *)
    QP = QPochhammer; s = QP[q^6]/(QP[q]*QP[q^2]*QP[q^3]) + O[q]^50; CoefficientList[s, q] (* Jean-François Alcover, Dec 01 2015, adapted from PARI *)
    Table[Total[l = Tally /@ IntegerPartitions@n;
    Table[x = l[[i]]; Product[x[[j, 2]], {j, Length[x]}], {i, Length[l]}]], {n, 0, 41}] (* Robert Price, Jun 06 2020 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^6 + A) / (eta(x + A) * eta(x^2 + A) * eta(x^3 + A)), n))} /* Michael Somos, Feb 05 2004 */

Formula

Expansion of eta(q^6) / (eta(q) * eta(q^2) * eta(q^3)) in powers of q. - Michael Somos, Feb 05 2004
Euler transform of period 6 sequence [ 1, 2, 2, 2, 1, 2, ...]. - Michael Somos, Feb 05 2004
G.f.: P(x)*P(x^2)*P(x^3)/P(x^6), where P(x)=Product_{k>0} 1/(1-x^k) is the partition generating function (A000041).
Equals EULER(DCONV(A000012, iEULER(A000027))).
G.f.: Product_{i>=1} (1-x^i+x^(2*i)) / (1-x^i)^2. - Vladeta Jovovic, Jan 16 2005
a(n) ~ 5^(3/4) * exp(Pi*sqrt(10*n)/3) / (2^(11/4) * 3^(3/2) * n^(5/4)). - Vaclav Kotesovec, Nov 28 2015
a(n) = Sum_{k>=1} k*A266477(n,k). - Alois P. Heinz, Dec 29 2015
G.f.: Product_{i>0} (1 + Sum_{j>0} j*x^(j*i)). - Seiichi Manyama, Oct 08 2017

Extensions

Edited and extended by Christian G. Bower, Jan 23 2004